A178635 a(n) = 72*((10^n - 1)/9)^2.
72, 8712, 887112, 88871112, 8888711112, 888887111112, 88888871111112, 8888888711111112, 888888887111111112, 88888888871111111112, 8888888888711111111112, 888888888887111111111112, 88888888888871111111111112, 8888888888888711111111111112, 888888888888887111111111111112
Offset: 1
Examples
n=1: ..................... 72 = 9 * 8; n=2: ................... 8712 = 99 * 88; n=3: ................. 887112 = 999 * 888; n=4: ............... 88871112 = 9999 * 8888; n=5: ............. 8888711112 = 99999 * 88888; n=6: ........... 888887111112 = 999999 * 888888; n=7: ......... 88888871111112 = 9999999 * 8888888; n=8: ....... 8888888711111112 = 99999999 * 88888888; n=9: ..... 888888887111111112 = 999999999 * 888888888.
References
- Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Magma
[72*((10^n-1)/9)^2: n in [1..50]]; // Vincenzo Librandi, Dec 28 2010
-
Mathematica
72 (FromDigits/@Table[PadRight[{}, n, 1], {n, 40}])^2 (* Vincenzo Librandi, Mar 21 2014 *)
-
PARI
a(n)=72*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013
Formula
G.f.: 72*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
From Elmo R. Oliveira, Aug 01 2025: (Start)
E.g.f.: 8*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. (End)