cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178703 Partial sums of round(3^n/7).

Original entry on oeis.org

0, 0, 1, 5, 17, 52, 156, 468, 1405, 4217, 12653, 37960, 113880, 341640, 1024921, 3074765, 9224297, 27672892, 83018676, 249056028, 747168085, 2241504257, 6724512773, 20173538320, 60520614960, 181561844880
Offset: 0

Views

Author

Mircea Merca, Dec 28 2010

Keywords

Examples

			a(6) = 0 + 0 + 1 + 4 + 12 + 35 + 104 = 156.
		

Programs

  • Magma
    [Floor((3*3^n-1)/14): n in [0..30]]; // Vincenzo Librandi, May 01 2011
    
  • Maple
    A178703 := proc(n) add( round(3^i/7),i=0..n) ; end proc:
  • Mathematica
    Table[Floor[(3^(n+1)-1)/14], {n,0,30}] (* G. C. Greubel, Jan 25 2019 *)
  • PARI
    vector(30, n, n--; ((3^(n+1)-1)/14)\1) \\ G. C. Greubel, Jan 25 2019
    
  • Sage
    [floor((3^(n+1)-1)/14) for n in (0..30)] # G. C. Greubel, Jan 25 2019

Formula

a(n) = round((3*3^n - 7)/14).
a(n) = floor((3*3^n - 1)/14).
a(n) = ceiling((3*3^n - 13)/14).
a(n) = a(n-6) + 52*3^(n-5), n > 5.
a(n) = 5*a(n-1) - 8*a(n-2) + 7*a(n-3) - 3*a(n-4), n > 3.
G.f.: x^2/((1 - x)*(1 - 3*x)*(1 - x + x^2)).
a(n) = 3^(n+1)/14 - 1/2 + A174737(n)/7. - R. J. Mathar, Jan 08 2011