A178738 Moebius inversion of a sequence related to powers of 2.
1, -1, -1, 1, 2, -3, -5, 9, 15, -27, -49, 89, 164, -304, -565, 1057, 1987, -3745, -7085, 13445, 25575, -48771, -93210, 178481, 342392, -657935, -1266205, 2440323, 4709403, -9099507, -17602325, 34087058, 66076421, -128207979, -248983641
Offset: 1
Examples
b(1)=1*1; b(3)=-1*3; ...; b(9)=2*9.
Crossrefs
Also related to A178749. - F. Chapoton, Jun 11 2010
Programs
-
Maple
A := proc(n) (-1)^binomial(floor((n+1)/2),2) * 2^floor((n-1)/2) ; end proc: L := [seq(A(n),n=1..40)] ; b := MOBIUS(L) ; for i from 1 to nops(b) by 2 do printf("%d,", op(i,b)/i) ; end do: # R. J. Mathar, Oct 29 2011
-
Mathematica
b[n_] := Sum[(-1)^Binomial[(d+1)/2, 2]*2^((d-1)/2)*MoebiusMu[n/d], {d, Divisors[n]}]/n; a[n_] := b[2n - 1]; a /@ Range[35] (* Jean-François Alcover, Mar 16 2020 *)
-
Sage
def suite(n): return sum((-1)**binomial(((d+1)//2), 2) * 2**((d-1)//2) * moebius(n//d) for d in divisors(n)) // n [suite(n) for n in range(1,22,2)]
Extensions
I would like a more precise definition. - N. J. A. Sloane, Jun 08 2010
Comments