cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A178904 This should be related to the Coxeter transformations of the posets of partitions in rectangular boxes of size m times n.

Original entry on oeis.org

1, -1, -1, 0, -1, 0, 0, 1, 1, 0, 0, -1, 1, -1, 0, 0, 1, -1, -1, 1, 0, 0, -1, 2, -3, 2, -1, 0, 0, 1, -3, 4, 4, -3, 1, 0, 0, -1, 3, -6, 8, -6, 3, -1, 0, 0, 1, -3, 9, -13, -13, 9, -3, 1, 0, 0, -1, 4, -11, 19, -23, 19, -11, 4, -1, 0, 0, 1, -5, 13, -27, 39, 39, -27, 13, -5, 1, 0, 0, -1, 5, -17, 38, -61, 71, -61, 38, -17, 5, -1, 0
Offset: 0

Views

Author

F. Chapoton, Jun 22 2010

Keywords

Comments

This table is symmetric: a(m,n)=a(n,m) for all m,n>=0.

Examples

			a(0,0) = 1, a(1,0) = a(0,1) = -1.
Triangle begins:
   1;
  -1, -1;
   0, -1,  0;
   0,  1,  1,  0;
   0, -1,  1, -1,  0;
   0,  1, -1, -1,  1,  0;
   0, -1,  2, -3,  2, -1, 0;
   ...
		

Crossrefs

Programs

  • Mathematica
    b[m_, n_] := (-1)^Max[m, n]*Binomial[m+n, n]; A[m_, n_] := DivisorSum[ n+m+1, b[Floor[m/#], Floor[n/#]]*MoebiusMu[#]&]/(m+n+1); Table[A[m-n, n], {m, 0, 12}, {n, 0, m}] // Flatten (* Jean-François Alcover, Feb 23 2017, adapted from Python *)
  • Sage
    def twisted_binomial(m, n):
        return (-1)**max(m, n) * binomial(m + n, n)
    def coefficients_A(m, n):
        return sum(twisted_binomial(m // d, n // d) * moebius(d)
               for d in divisors(m + n + 1)) / (m + n + 1)
    matrix(ZZ, 8, 8, coefficients_A)

Extensions

Terms a(82) onward added by G. C. Greubel, Dec 10 2017

A178749 n*a(n) provides the Moebius transform of signed central binomial coefficients.

Original entry on oeis.org

1, -1, -1, 1, 1, -1, -3, 4, 8, -13, -23, 39, 71, -121, -229, 400, 757, -1354, -2559, 4625, 8799, -16021, -30671, 56316, 108166, -200047, -385210, 716429, 1383331, -2585173, -5003791, 9391680, 18214565, -34318117, -66674463, 126044208, 245273927, -465067981
Offset: 1

Views

Author

F. Chapoton, Jun 09 2010

Keywords

Comments

This should be related to the Coxeter transformation for the Tamari lattices.
The source sequence is 1, -1, -2, 3, 6, -10, -20, 35, 70, -126, ... (A001405). Its Mobius transform is 1, -2, -3, 4, 5, -6, -21, 32, 72, -130, -253, 468, 923, ... and division of each term through n generates a(n). - R. J. Mathar, Jul 23 2012

Examples

			G.f. = x - x^2 - x^3 + x^4 + x^5 - x^6 - 3*x^7 + 4*x^8 + 8*x^9 - 13*x^10 + ...
		

Crossrefs

Similar to A022553, A131868 and A178738.
Also related to A163210.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*[1$2, -1$2][1+irem(d, 4)]*
            binomial(d-1, iquo(d-1, 2)), d=divisors(n))/n:
    seq(a(n), n=1..50);  # Alois P. Heinz, Apr 05 2013
  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, MoebiusMu[ n/#] (-1)^Quotient[ #, 2] Binomial[ # - 1, Quotient[ # - 1, 2]] &] / n]; (* Michael Somos, Sep 14 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, moebius(n/d) * (-1)^(d\2) * binomial(d-1, (d-1)\2)) / n)}; /* Michael Somos, Dec 23 2014 */
  • Sage
    def lam(n):
        return (-1)**binomial(n, 2) * binomial(n - 1, (n - 1) // 2)
    def a(n):
        return sum(moebius(n // d) * lam(d) for d in divisors(n)) // n
    [a(n) for n in range(1, 20)]
    

A334125 Number of subsets of {1, 3, ..., 2*n-1} which sum to 0 modulo 2*n-1.

Original entry on oeis.org

2, 2, 2, 2, 4, 6, 10, 18, 30, 54, 98, 178, 328, 608, 1130, 2114, 3974, 7490, 14170, 26890, 51150, 97542, 186420, 356962, 684784, 1315870, 2532410, 4880646, 9418806, 18199014, 35204650, 68174116, 132152842, 256415958, 497967282, 967879954, 1882725390, 3665038872
Offset: 1

Views

Author

Jinyuan Wang, Apr 30 2020

Keywords

Examples

			a(5) = 4 because there are 4 subsets of {1, 3, 5, 7, 9} which sum to 0 modulo 9: {}, {9}, {1, 3, 5}, {1, 3, 5, 9}.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local V, k;
      V:= Vector(2*n-1);
      V[2*n-1]:= 1;
      for k from 1 to 2*n-1 by 2 do
        V:= V + V[[$(k+1)..(2*n-1),$1..k]]
      od;
      V[2*n-1]
    end proc:
    map(f, [$1..40]); # Robert Israel, May 12 2020
  • PARI
    a(n) = {my(v=Vec(prod(i=1, n, x^(2*i-1)+1))); sum(i=0, n^2\(2*n-1), v[n^2+1-i*(2*n-1)]); }

Formula

If 2*k - 1 is a prime, then a(k) = (2^k - 2*(-1)^floor(k/2))/(2*k - 1).
Conjecture: a(n) = 2*abs(A178738(n)).
Showing 1-3 of 3 results.