cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178740 Product of the 5th power of a prime (A050997) and a different prime (p^5*q).

Original entry on oeis.org

96, 160, 224, 352, 416, 486, 544, 608, 736, 928, 992, 1184, 1215, 1312, 1376, 1504, 1696, 1701, 1888, 1952, 2144, 2272, 2336, 2528, 2656, 2673, 2848, 3104, 3159, 3232, 3296, 3424, 3488, 3616, 4064, 4131, 4192, 4384, 4448, 4617, 4768, 4832, 5024, 5216
Offset: 1

Views

Author

Will Nicholes, Jun 08 2010

Keywords

Comments

Subsequence of A030630, integers whose number of divisors is 12. - Michel Marcus, Nov 11 2015

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,5};Select[Range[6000],f] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
    With[{nn=50},Take[Union[Flatten[{#[[1]]^5 #[[2]],#[[1]]#[[2]]^5}&/@Subsets[ Prime[ Range[nn]],{2}]]],nn]] (* Harvey P. Dale, Mar 18 2013 *)
  • PARI
    list(lim)=my(v=List(), t); forprime(p=2, (lim\2)^(1/5), t=p^5; forprime(q=2, lim\t, if(p==q, next); listput(v, t*q))); vecsort(Vec(v)) \\ Altug Alkan, Nov 11 2015
    
  • PARI
    isok(n)=my(f=factor(n)[, 2]); f==[5, 1]~||f==[1, 5]~
    for(n=1, 1e4, if(isok(n), print1(n,", "))) \\ Altug Alkan, Nov 11 2015
    
  • Python
    from sympy import primepi, primerange, integer_nthroot
    def A178740(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**5) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,6)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025