A178740 Product of the 5th power of a prime (A050997) and a different prime (p^5*q).
96, 160, 224, 352, 416, 486, 544, 608, 736, 928, 992, 1184, 1215, 1312, 1376, 1504, 1696, 1701, 1888, 1952, 2144, 2272, 2336, 2528, 2656, 2673, 2848, 3104, 3159, 3232, 3296, 3424, 3488, 3616, 4064, 4131, 4192, 4384, 4448, 4617, 4768, 4832, 5024, 5216
Offset: 1
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={1,5};Select[Range[6000],f] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *) With[{nn=50},Take[Union[Flatten[{#[[1]]^5 #[[2]],#[[1]]#[[2]]^5}&/@Subsets[ Prime[ Range[nn]],{2}]]],nn]] (* Harvey P. Dale, Mar 18 2013 *)
-
PARI
list(lim)=my(v=List(), t); forprime(p=2, (lim\2)^(1/5), t=p^5; forprime(q=2, lim\t, if(p==q, next); listput(v, t*q))); vecsort(Vec(v)) \\ Altug Alkan, Nov 11 2015
-
PARI
isok(n)=my(f=factor(n)[, 2]); f==[5, 1]~||f==[1, 5]~ for(n=1, 1e4, if(isok(n), print1(n,", "))) \\ Altug Alkan, Nov 11 2015
-
Python
from sympy import primepi, primerange, integer_nthroot def A178740(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(x//p**5) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,6)[0]) return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025
Comments