A178748 Total number of '1' bits in the terms of 'rows' of A178746.
1, 2, 7, 14, 37, 80, 187, 410, 913, 1988, 4327, 9326, 20029, 42776, 91027, 192962, 407785, 859244, 1805887, 3786518, 7922581, 16544192, 34486507, 71769194, 149130817, 309446420, 641262487, 1327264190, 2744006893, 5666970728, 11691855427, 24099538706, 49630733209
Offset: 0
Examples
a(0) = bitcount(1) = 1. a(1) = bitcount(3) = 2. a(2) = bitcount(6) + bitcount(6) + bitcount(7) = 2 + 2 + 3 = 7.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,3,-4,-4).
Programs
-
Mathematica
LinearRecurrence[{2,3,-4,-4},{1,2,7,14},40] (* Harvey P. Dale, Aug 27 2021 *)
-
PARI
seq(n)={my(a=vector(n+1), f=0, p=0, k=1, s=0); while(k<=#a, my(b=bitxor(p+1,p)); f=bitxor(f,b); p=bitxor(p, bitand(b,f)); if(p>2^k, a[k]=s; k++; s=0); s+=hammingweight(p)); a} \\ Andrew Howroyd, Mar 03 2020
-
PARI
a(n) = {(2^n*(3*n+8) + (3*n+1)*(-1)^n)/9} \\ Andrew Howroyd, Mar 03 2020
-
PARI
Vec((1 - 2*x^3) / ((1 + x)^2*(1 - 2*x)^2) + O(x^30)) \\ Colin Barker, Mar 04 2020
Formula
G.f: (1/2)*x^3 - 1/4 + (x^4 + x^3 - (3/4)*x^2 - (1/2)*x + 1/4)*F(x) = 0. [From GUESSS]
From David Scambler, Jun 10 2010: (Start)
a(n) = (2^n*(3*n+8) + (3*n+1)*(-1)^n)/9.
(End)
From Colin Barker, Mar 04 2020: (Start)
G.f.: (1 - 2*x^3) / ((1 + x)^2*(1 - 2*x)^2).
a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) - 4*a(n-4) for n>3.
(End)
Extensions
Terms a(16) and beyond from Andrew Howroyd, Mar 03 2020
Comments