A178749 n*a(n) provides the Moebius transform of signed central binomial coefficients.
1, -1, -1, 1, 1, -1, -3, 4, 8, -13, -23, 39, 71, -121, -229, 400, 757, -1354, -2559, 4625, 8799, -16021, -30671, 56316, 108166, -200047, -385210, 716429, 1383331, -2585173, -5003791, 9391680, 18214565, -34318117, -66674463, 126044208, 245273927, -465067981
Offset: 1
Keywords
Examples
G.f. = x - x^2 - x^3 + x^4 + x^5 - x^6 - 3*x^7 + 4*x^8 + 8*x^9 - 13*x^10 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- F. Chapoton, Le module dendriforme sur le groupe cyclique, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, 2333-2350. In French.
Programs
-
Maple
with(numtheory): a:= n-> add(mobius(n/d)*[1$2, -1$2][1+irem(d, 4)]* binomial(d-1, iquo(d-1, 2)), d=divisors(n))/n: seq(a(n), n=1..50); # Alois P. Heinz, Apr 05 2013
-
Mathematica
a[ n_] := If[ n < 1, 0, DivisorSum[ n, MoebiusMu[ n/#] (-1)^Quotient[ #, 2] Binomial[ # - 1, Quotient[ # - 1, 2]] &] / n]; (* Michael Somos, Sep 14 2015 *)
-
PARI
{a(n) = if( n<1, 0, sumdiv( n, d, moebius(n/d) * (-1)^(d\2) * binomial(d-1, (d-1)\2)) / n)}; /* Michael Somos, Dec 23 2014 */
-
Sage
def lam(n): return (-1)**binomial(n, 2) * binomial(n - 1, (n - 1) // 2) def a(n): return sum(moebius(n // d) * lam(d) for d in divisors(n)) // n [a(n) for n in range(1, 20)]
Comments