cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178756 Rectangular array T(n,k) = binomial(n,2)*k*n^(k-1) read by antidiagonals.

Original entry on oeis.org

1, 4, 3, 12, 18, 6, 32, 81, 48, 10, 80, 324, 288, 100, 15, 192, 1215, 1536, 750, 180, 21, 448, 4374, 7680, 5000, 1620, 294, 28, 1024, 15309, 36864, 31250, 12960, 3087, 448, 36, 2304, 52488, 172032, 187500, 97200, 28812, 5376, 648, 45
Offset: 2

Views

Author

Geoffrey Critzer, Dec 26 2010

Keywords

Comments

T(n,k) is the sum of the digits in all n-ary words of length k. That is, sequences of k digits taken on an alphabet of {0,1,2,...,n-1}.
Note the rectangle is indexed begining from n = 2 (binary sequences) which is A001787.

Examples

			1,4,12,32,80,192,448,1024
3,18,81,324,1215,4374,15309,52488
6,48,288,1536,7680,36864,172032,786432
10,100,750,5000,31250,187500,1093750,6250000
15,180,1620,12960,97200,699840,4898880,33592320
		

Crossrefs

Cf. A036290 (ternary sequences), A034967 (decimal digits).

Programs

  • GAP
    T:=Flat(List([3..10], n-> List([2..n-1], k-> Binomial(k,2)*(n-k)* k^(n-k-1) ))); # G. C. Greubel, Jan 24 2019
  • Magma
    [[Binomial(k,2)*(n-k)*k^(n-k-1): k in [2..n-1]]: n in [3..10]]; // G. C. Greubel, Jan 24 2019
    
  • Maple
    T:= (n, k)-> binomial(n, 2)*k*n^(k-1):
    seq(seq(T(n, 1+d-n), n=2..d), d=2..14); # Alois P. Heinz, Jan 17 2013
  • Mathematica
    Table[Range[8]! Rest[CoefficientList[Series[Binomial[n,2]x Exp[n x],{x,0,8}],x]],{n,2,10}]//Grid
    T[n_, k_]:= Binomial[n, 2]*k*n^(k-1); Table[T[k,n-k], {n,2,10}, {k, 2, n-1}]//Flatten (* G. C. Greubel, Jan 24 2019 *)
  • PARI
    {T(n,k) = binomial(n,2)*k*n^(k-1)};
    for(n=2,10, for(k=2,n-1, print1(T(k,n-k), ", "))) \\ G. C. Greubel, Jan 24 2019
    
  • Sage
    [[binomial(k,2)*(n-k)*k^(n-k-1) for k in (2..n-1)] for n in (3..10)] # G. C. Greubel, Jan 24 2019
    

Formula

E.g.f. for row n: binomial(n,2)*x*exp(n*x).