A178756 Rectangular array T(n,k) = binomial(n,2)*k*n^(k-1) read by antidiagonals.
1, 4, 3, 12, 18, 6, 32, 81, 48, 10, 80, 324, 288, 100, 15, 192, 1215, 1536, 750, 180, 21, 448, 4374, 7680, 5000, 1620, 294, 28, 1024, 15309, 36864, 31250, 12960, 3087, 448, 36, 2304, 52488, 172032, 187500, 97200, 28812, 5376, 648, 45
Offset: 2
Examples
1,4,12,32,80,192,448,1024 3,18,81,324,1215,4374,15309,52488 6,48,288,1536,7680,36864,172032,786432 10,100,750,5000,31250,187500,1093750,6250000 15,180,1620,12960,97200,699840,4898880,33592320
Links
- G. C. Greubel, Antidiagonals n=2..101, flattened
Programs
-
GAP
T:=Flat(List([3..10], n-> List([2..n-1], k-> Binomial(k,2)*(n-k)* k^(n-k-1) ))); # G. C. Greubel, Jan 24 2019
-
Magma
[[Binomial(k,2)*(n-k)*k^(n-k-1): k in [2..n-1]]: n in [3..10]]; // G. C. Greubel, Jan 24 2019
-
Maple
T:= (n, k)-> binomial(n, 2)*k*n^(k-1): seq(seq(T(n, 1+d-n), n=2..d), d=2..14); # Alois P. Heinz, Jan 17 2013
-
Mathematica
Table[Range[8]! Rest[CoefficientList[Series[Binomial[n,2]x Exp[n x],{x,0,8}],x]],{n,2,10}]//Grid T[n_, k_]:= Binomial[n, 2]*k*n^(k-1); Table[T[k,n-k], {n,2,10}, {k, 2, n-1}]//Flatten (* G. C. Greubel, Jan 24 2019 *)
-
PARI
{T(n,k) = binomial(n,2)*k*n^(k-1)}; for(n=2,10, for(k=2,n-1, print1(T(k,n-k), ", "))) \\ G. C. Greubel, Jan 24 2019
-
Sage
[[binomial(k,2)*(n-k)*k^(n-k-1) for k in (2..n-1)] for n in (3..10)] # G. C. Greubel, Jan 24 2019
Formula
E.g.f. for row n: binomial(n,2)*x*exp(n*x).
Comments