cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A178795 Expansion of the polynomial (x^15-1)*(x^12-1)*(x^10-1)*(x^9-1)*(x^7-1)*(x^6-1)*(x^4-1)*(x-1) in increasing powers of x.

Original entry on oeis.org

1, -1, 0, 0, -1, 1, -1, 0, 1, -1, 1, 1, -2, 3, -1, -1, 3, -3, 1, 1, -4, 3, -1, -3, 4, -4, 1, 3, -5, 4, 0, -3, 6, -3, 0, 4, -5, 3, 1, -4, 4, -3, -1, 3, -4, 1, 1, -3, 3, -1, -1, 3, -2, 1, 1, -1, 1, 0, -1, 1, -1, 0, 0, -1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2010

Keywords

Comments

q^120*(q^30-1)*(q^24-1)*(q^20-1)*(q^18-1)*(q^14-1)*(q^12-1)*(q^8-1)*(q^2-1) is the order of the simple group E_8(q), if q is a prime power.
If f(x) is the x-polynomial and g(q) the q-polynomial, then g(q) = q^120*f(q^2). - Jean-François Alcover, Aug 25 2022

Examples

			With p=2 one gets the order of E_8(2): 337804753143634806261388190614085595079991692242467651576160959909068800000. - _Jean-François Alcover_, Aug 25 2022
		

References

  • R. L. Griess, Jr., Twelve Sporadic Groups, Springer, 1998; see p. 169.

Crossrefs

Programs

  • PARI
    Vec((x^15-1)*(x^12-1)*(x^10-1)*(x^9-1)*(x^7-1)*(x^6-1)*(x^4-1)*(x-1)) \\ Michel Marcus, Aug 25 2022

A008913 Order of simple Chevalley group F_4(q), q = prime power.

Original entry on oeis.org

3311126603366400, 5734420792816671844761600, 19009825523840945451297669120000, 2131486317725501953125000000000000000, 86325573304608766361629193317905069834240000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
  • R. L. Griess, Jr., Twelve Sporadic Groups, Springer, 1998; see p. 169.

Crossrefs

Cf. A178779.

Programs

  • Maple
    q^24*(q^2-1)*(q^6-1)*(q^8-1)*(q^12-1);
  • Mathematica
    Table[q^24*(q^2-1)*(q^6-1)*(q^8-1)*(q^12-1), {q, Select[Range[7], PrimePowerQ]}] (* Jean-François Alcover, Aug 24 2022 *)

A178780 Expansion of the polynomial x^36*(x^12-1)*(x^9-1)*(x^8-1)*(x^6-1)*(x^5-1)*(x^2-1) in increasing powers of x.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, -1, -1, 1, 0, -1, 1, 2, -1, 0, 3, 0, -2, 1, 1, -3, -1, 2, -1, -3, 1, 1, -2, 0, 3, 0, -1, 2, 1, -1, 0, 1, -1, -1, 0, 0, -1, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2010

Keywords

Comments

q^36*(q^12-1)*(q^9-1)*(q^8-1)*(q^6-1)*(q^5-1)*(q^2-1) is the order of the simple group E_6(q), if q is a prime power.

References

  • R. L. Griess, Jr., Twelve Sporadic Groups, Springer, 1998; see p. 169.

Crossrefs

Showing 1-3 of 3 results.