cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A008868 Order of simple Chevalley group E_8 (q), q = prime power.

Original entry on oeis.org

337804753143634806261388190614085595079991692242467651576160959909068800000, 18830052912953932311099032439972660332140886784940152038522449391826616580150109878711243949982163694448626420940800000, 191797292142671717754639757897512906421357507604216557533558287598236977154127870984484770345340348298409697395609822849492217656441474908160000000000
Offset: 1

Views

Author

Keywords

Comments

Coxeter and Moser p. 131 remark that the first term in this sequence is comparable to Eddington's estimate of the number of protons in the universe. See also the comment in A004231!

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Maple
    q^120*(q^2-1)*(q^8-1)*(q^12-1)*(q^14-1)*(q^18-1)*(q^20-1)*(q^24-1)*(q^30-1);
  • Mathematica
    Table[q^120*(q^2-1)*(q^8-1)*(q^12-1)*(q^14-1)*(q^18-1)*(q^20-1)*(q^24-1)*(q^30-1), {q, Select[Range[4], PrimePowerQ]}] (* Jean-François Alcover, Aug 24 2022 *)

Extensions

a(3) added by N. J. A. Sloane, Sep 16 2008

A178779 Expansion of the polynomial x^12*(x^6-1)*(x^4-1)*(x^3-1)*(x-1) in increasing powers of x.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 0, 1, -1, 2, -1, 1, 0, -1, 0, -1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2010

Keywords

Comments

q^24*(q^12-1)*(q^8-1)*(q^6-1)*(q^2-1) is the order of the simple group F_4(q), if q is a prime power.
The x-polynomial f(x) and the q-polynomial g(q) are such that g(q) = f(q^2) - Jean-François Alcover, Aug 25 2022

References

  • R. L. Griess, Jr., Twelve Sporadic Groups, Springer, 1998; see p. 169.

Crossrefs

Programs

  • PARI
    Vecrev(x^12*(x^6-1)*(x^4-1)*(x^3-1)*(x-1)) \\ Michel Marcus, Aug 25 2022

A178781 Expansion of the polynomial (x^9-1)*(x^7-1)*(x^6-1)*(x^5-1)*(x^4-1)*(x^3-1)*(x-1) in increasing powers of x.

Original entry on oeis.org

-1, 1, 0, 1, 0, 0, 0, -1, -1, 0, -1, 0, 1, 0, 2, 0, 1, 0, 0, -1, 0, -2, 0, -1, 0, 1, 0, 1, 1, 0, 0, 0, -1, 0, -1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2010

Keywords

Comments

q^63*(q^18-1)*(q^14-1)*(q^12-1)*(q^10-1)*(q^8-1)*(q^6-1)*(q^2-1) is the order of the simple group E_7(q), if q is a prime power.
The x-polynomial f(x) and the q-polynomial g(q) are such that g(q) = q^63*f(q^2) - Jean-François Alcover, Aug 25 2022

References

  • R. L. Griess, Jr., Twelve Sporadic Groups, Springer, 1998; see p. 169.

Crossrefs

Programs

  • PARI
    Vecrev((x^9-1)*(x^7-1)*(x^6-1)*(x^5-1)*(x^4-1)*(x^3-1)*(x-1)) \\ Michel Marcus, Aug 25 2022

A178780 Expansion of the polynomial x^36*(x^12-1)*(x^9-1)*(x^8-1)*(x^6-1)*(x^5-1)*(x^2-1) in increasing powers of x.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, -1, -1, 1, 0, -1, 1, 2, -1, 0, 3, 0, -2, 1, 1, -3, -1, 2, -1, -3, 1, 1, -2, 0, 3, 0, -1, 2, 1, -1, 0, 1, -1, -1, 0, 0, -1, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2010

Keywords

Comments

q^36*(q^12-1)*(q^9-1)*(q^8-1)*(q^6-1)*(q^5-1)*(q^2-1) is the order of the simple group E_6(q), if q is a prime power.

References

  • R. L. Griess, Jr., Twelve Sporadic Groups, Springer, 1998; see p. 169.

Crossrefs

A178798 Expansion of the polynomial x^36*(x^12-1)*(x^9+1)*(x^8-1)*(x^6-1)*(x^5-1)*(x^2-1) in increasing powers of x.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 1, 1, -1, 0, -1, -1, 0, 1, 0, -1, 2, 0, -1, -1, 1, -1, 0, 1, -1, 1, 1, 0, -2, 1, 0, -1, 0, 1, 1, 0, 1, -1, -1, 0, 0, -1, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2010

Keywords

Comments

x^36*(x^12-1)*(x^9+1)*(x^8-1)*(x^6-1)*(x^5-1)*(x^2-1) is the order of the twisted Chevalley group 2_E_6 (q), q = prime power.

References

  • R. L. Griess, Jr., Twelve Sporadic Groups, Springer, 1998; see p. 169.

Crossrefs

Showing 1-5 of 5 results.