A178816 Decimal expansion of the area of the regular 10-gon (decagon) of edge length 1.
7, 6, 9, 4, 2, 0, 8, 8, 4, 2, 9, 3, 8, 1, 3, 3, 5, 0, 6, 4, 2, 5, 7, 2, 6, 4, 4, 0, 0, 9, 2, 2, 7, 4, 5, 6, 0, 0, 1, 6, 7, 5, 5, 3, 5, 8, 8, 4, 4, 4, 8, 1, 0, 6, 7, 5, 9, 7, 8, 9, 0, 6, 2, 5, 9, 3, 7, 1, 5, 8, 2, 2, 1, 2, 3, 7, 7, 2, 7, 2, 9, 6, 1, 3, 6, 4, 8, 4, 3, 0, 4, 1, 6, 7, 7, 6, 3, 5, 8, 8, 1, 7, 9, 7, 6
Offset: 1
Examples
7.69420884293813350642572644009227456001675535884448106759789062593715... sqrt(3 + 4*phi)/4 = 0.769420884293813350642572644009227456001675535884... - _Wolfdieter Lang_, Jan 09 2018
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10001
- Wikipedia, Decagon
- Wikipedia, Regular polygon
- Index entries for algebraic numbers, degree 4
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); 5*Sqrt(2*Sqrt(5)+5)/2; // G. C. Greubel, Jan 22 2019
-
Maple
evalf[120](5*sqrt(5+2*sqrt(5))/2); # Muniru A Asiru, Jan 22 2019
-
Mathematica
RealDigits[5*Sqrt[5+2*Sqrt[5]]/2, 10, 100][[1]]
-
PARI
5*sqrt(2*sqrt(5)+5)/2 \\ Charles R Greathouse IV, Apr 25 2016
-
Sage
numerical_approx(5*sqrt(2*sqrt(5)+5)/2, digits=100) # G. C. Greubel, Jan 22 2019
Formula
Digits of 5*sqrt(5+2*sqrt(5))/2 = (5/2)*sqrt(3 + 4*phi), with phi from A001622.
Comments