cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178816 Decimal expansion of the area of the regular 10-gon (decagon) of edge length 1.

Original entry on oeis.org

7, 6, 9, 4, 2, 0, 8, 8, 4, 2, 9, 3, 8, 1, 3, 3, 5, 0, 6, 4, 2, 5, 7, 2, 6, 4, 4, 0, 0, 9, 2, 2, 7, 4, 5, 6, 0, 0, 1, 6, 7, 5, 5, 3, 5, 8, 8, 4, 4, 4, 8, 1, 0, 6, 7, 5, 9, 7, 8, 9, 0, 6, 2, 5, 9, 3, 7, 1, 5, 8, 2, 2, 1, 2, 3, 7, 7, 2, 7, 2, 9, 6, 1, 3, 6, 4, 8, 4, 3, 0, 4, 1, 6, 7, 7, 6, 3, 5, 8, 8, 1, 7, 9, 7, 6
Offset: 1

Views

Author

Keywords

Comments

An algebraic number with degree 4 and denominator 2; minimal polynomial 16x^4 - 1000x^2 + 3125. - Charles R Greathouse IV, Apr 25 2016
This equals in a regular pentagon inscribed in a unit circle with vertices V0 = (x, y) = (1, 0), and V1..V4 in the counterclockwise sense, one tenth of the y-coordinate of the midpoint of side (V1,V2), named M1: M1_y = (2*sqrt(3 - phi) + sqrt(7 - 4*phi))/4 = sqrt(3 + 4*phi)/4. The x-coordinate is M1_x = -1/4. - Wolfdieter Lang, Jan 09 2018

Examples

			7.69420884293813350642572644009227456001675535884448106759789062593715...
sqrt(3 + 4*phi)/4 = 0.769420884293813350642572644009227456001675535884... - _Wolfdieter Lang_, Jan 09 2018
		

Crossrefs

Cf. Areas of other regular polygons: A120011, A102771, A104956, A178817, A090488, A256853, A256854, A178809.
Cf. A001622.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 5*Sqrt(2*Sqrt(5)+5)/2; // G. C. Greubel, Jan 22 2019
    
  • Maple
    evalf[120](5*sqrt(5+2*sqrt(5))/2); # Muniru A Asiru, Jan 22 2019
  • Mathematica
    RealDigits[5*Sqrt[5+2*Sqrt[5]]/2, 10, 100][[1]]
  • PARI
    5*sqrt(2*sqrt(5)+5)/2 \\ Charles R Greathouse IV, Apr 25 2016
    
  • Sage
    numerical_approx(5*sqrt(2*sqrt(5)+5)/2, digits=100) # G. C. Greubel, Jan 22 2019

Formula

Digits of 5*sqrt(5+2*sqrt(5))/2 = (5/2)*sqrt(3 + 4*phi), with phi from A001622.