cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178818 Decimal expansion of the diameter of the regular 7-gon (heptagon) of edge length 1.

Original entry on oeis.org

2, 0, 7, 6, 5, 2, 1, 3, 9, 6, 5, 7, 2, 3, 3, 6, 5, 6, 7, 1, 6, 3, 5, 3, 8, 8, 6, 1, 4, 8, 5, 8, 4, 0, 3, 3, 0, 7, 0, 5, 7, 2, 0, 2, 0, 6, 6, 2, 5, 9, 6, 8, 5, 2, 4, 0, 8, 3, 4, 1, 7, 3, 7, 6, 8, 6, 3, 0, 2, 8, 4, 8, 7, 0, 6, 4, 5, 9, 7, 7, 1, 7, 4, 6, 4, 4, 1, 7, 5, 5, 1, 5, 9, 7, 6, 0, 6, 2, 2, 5, 3, 5, 4, 8, 8
Offset: 1

Views

Author

Keywords

Examples

			2.07652139657233656716353886148584033070572020662596852408341737686302...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Cot(Pi(R)/7); // G. C. Greubel, Jan 22 2019
    
  • Maple
    evalf[120](cot(Pi/7)); # Muniru A Asiru, Jan 22 2019
  • Mathematica
    RealDigits[Cot[Pi/7],10, 100][[1]]
  • PARI
    default(realprecision, 100); cotan(Pi/7) \\ G. C. Greubel, Jan 22 2019
    
  • Sage
    numerical_approx(cot(pi/7), digits=100) # G. C. Greubel, Jan 22 2019

Formula

Digits of cot(Pi/7).
Largest of the 6 real-valued roots of 7*x^6 -35*x^4 +21*x^2 -1=0. - R. J. Mathar, Aug 29 2025