cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178834 a(n) counts anti-chains of size two in "0,1,2" Motzkin trees on n edges.

Original entry on oeis.org

0, 0, 1, 5, 23, 91, 341, 1221, 4249, 14465, 48442, 160134, 523872, 1699252, 5472713, 17520217, 55801733, 176942269, 558906164, 1759436704, 5522119250, 17285351782, 53977433618, 168194390290, 523076690018, 1623869984706
Offset: 0

Views

Author

Lifoma Salaam, Dec 27 2010

Keywords

Comments

"0,1,2" trees are rooted trees where each vertex has outdegree zero, one or two. They are counted by the Motzkin numbers.
From Petros Hadjicostas, Jun 02 2020: (Start)
Let A(r,n) be the number of ordered pairs (T, s), where T is a "0,1,2" tree (Motzkin tree) with n edges and s is an r-element anti-chain in T. See Definition 42, p. 30, in Salaam (2008) but we use different notation here.
An r-element anti-chain in a tree is a set of r nodes such that, for every two nodes u and v in the set, u is neither an ancestor nor a descendant of v.
For the current sequence, a(n) = A(r=2, n) for n >= 0.
Let A[r](z) = Sum_{n >= 0} A(r,n)*z^n be the g.f. of the sequence (A(r,n): n >= 0) for fixed r >= 1.
In Theorem 44 (p. 33), Salaam proved that A[r](z) = c_{r-1} * z^(2*r-2) * L(z)^(r-1) * V(z)^r, where c_r = (1/(r + 1))*binomial(2*r, r) is the r-th Catalan number in A000108, L(z) = T(z) = 1/sqrt(1 - 2*z - 3*z^2) is the g.f. of the central trinomial numbers A002426, and V(z) = T(z)*M(z), where M(z) = (1 - z - sqrt(1 - 2*z - 3*z^2))/(2*z^2) is the g.f. of the Motzkin numbers A001006.
It follows (see Table 2.4, p. 39) that A[r](z) = c_{r-1} * z^(2*r-2) * T(z)^(2*r-1) * M(z)^r for fixed r >= 1.
For r = 1, A[r=1](z) = Sum_{n >= 0} A(r=1, n)*z^n = T(z)*M(z) = V(z) is the g.f. of the total number of vertices in all "0,1,2" trees with n edges (i.e., the g.f. of the sequence (A005717(n+1): n >= 0)).
For r = 2, A[r=2](z) = z^2 * T(z)^3 * M(z)^2 is the g.f. of the current sequence. (End)

Examples

			For n = 3, we have a(3) = 5 because there are 5 two-element anti-chains on "0,1,2" Motzkin trees on 3 edges.
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); [0,0] cat Coefficients(R!( (1-x-Sqrt(1-2*x-3*x^2))^2/(4*x^2*Sqrt(1-2*x-3*x^2)^3) )); // G. C. Greubel, Jan 21 2019
    
  • Mathematica
    M:= (1-z -Sqrt[1-2*z-3*z^2])/(2*z^2); T:= 1/Sqrt[1-2*z-3*z^2]; CoefficientList[Series[z^2*M^2*T^3, {z, 0, 30}], z] (* G. C. Greubel, Jan 21 2019 *)
  • PARI
    z='z+O('z^33); M=(1-z-sqrt(1-2*z-3*z^2))/(2*z^2); T=1/sqrt(1-2*z-3*z^2); v=Vec(z^2*M^2*T^3+'tmp); v[1]=0; v
    
  • SageMath
    ((1-x-sqrt(1-2*x-3*x^2))^2/(4*x^2*sqrt(1-2*x-3*x^2)^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 21 2019

Formula

G.f.: z^2 * M(z)^2 * T(z)^3, where M(z) = (1 - z - sqrt(1 - 2*z - 3*z^2))/(2*z^2) is the g.f. of the Motzkin numbers and T(z) = 1/sqrt(1 - 2*z - 3*z^2) is the g.f. of the central trinomial numbers.
D-finite with recurrence: -(n-2)*(n+2)*a(n) + (4*n^2-n-8)*a(n-1) + (2*n^2-n-12)*a(n-2) - 3*n*(4*n-3)*a(n-3) - 9*n*(n-1)*a(n-4) = 0. - R. J. Mathar, Jun 14 2016
a(n) ~ 3^(n + 3/2) * sqrt(n) / (4*sqrt(Pi)) * (1 - sqrt(3*Pi)/sqrt(n)). - Vaclav Kotesovec, Mar 08 2023