Lifoma Salaam has authored 4 sequences.
A179176
Number of vertices with even distance from the root in "0-1-2" Motzkin trees on n edges.
Original entry on oeis.org
1, 1, 3, 9, 24, 66, 187, 529, 1506, 4312, 12394, 35742, 103377, 299745, 871011, 2535873, 7395522, 21600720, 63176964, 185004852, 542365407, 1591631595, 4675170690, 13744341390, 40438307599, 119063564395, 350799321531
Offset: 0
We have a(3)=9, as there are 9 vertices with even distance from the root in the 4 "0-1-2" Motzkin trees on 3 edges.
-
with(LREtools): with(FormalPowerSeries): # requires Maple 2022
M:= (1-z-sqrt(1-2*z-3*z^2))/(2*z^2): T:=1/sqrt(1-2*z-3*z^2):
ogf:= (M*T^2)/(2*T-1): req:= FindRE(ogf,z,u(n)):
init:= [1, 1, 3, 9, 24, 66]: iseq:= seq(u(i-1)=init[i],i=1..nops(init)):
rmin:= subs(n=n-4, MinimalRecurrence(req,u(n),{iseq})[1]); # Mathar's recurrence
a:= gfun:-rectoproc({rmin, iseq}, u(n), remember):
seq(a(n),n=0..27); # Georg Fischer, Nov 04 2022
# Alternative, using function FindSeq from A174403:
ogf := (1-x-sqrt(-3*x^2-2*x+1))/(2*x^2*(3*x^2+2*sqrt(-3*x^2-2*x+1)+2*x-1)):
a := FindSeq(ogf): seq(a(n), n=0..28); # Peter Luschny, Nov 04 2022
A178834
a(n) counts anti-chains of size two in "0,1,2" Motzkin trees on n edges.
Original entry on oeis.org
0, 0, 1, 5, 23, 91, 341, 1221, 4249, 14465, 48442, 160134, 523872, 1699252, 5472713, 17520217, 55801733, 176942269, 558906164, 1759436704, 5522119250, 17285351782, 53977433618, 168194390290, 523076690018, 1623869984706
Offset: 0
For n = 3, we have a(3) = 5 because there are 5 two-element anti-chains on "0,1,2" Motzkin trees on 3 edges.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); [0,0] cat Coefficients(R!( (1-x-Sqrt(1-2*x-3*x^2))^2/(4*x^2*Sqrt(1-2*x-3*x^2)^3) )); // G. C. Greubel, Jan 21 2019
-
M:= (1-z -Sqrt[1-2*z-3*z^2])/(2*z^2); T:= 1/Sqrt[1-2*z-3*z^2]; CoefficientList[Series[z^2*M^2*T^3, {z, 0, 30}], z] (* G. C. Greubel, Jan 21 2019 *)
-
z='z+O('z^33); M=(1-z-sqrt(1-2*z-3*z^2))/(2*z^2); T=1/sqrt(1-2*z-3*z^2); v=Vec(z^2*M^2*T^3+'tmp); v[1]=0; v
-
((1-x-sqrt(1-2*x-3*x^2))^2/(4*x^2*sqrt(1-2*x-3*x^2)^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 21 2019
A139262
Total number of two-element anti-chains over all ordered trees on n edges.
Original entry on oeis.org
0, 0, 1, 8, 47, 244, 1186, 5536, 25147, 112028, 491870, 2135440, 9188406, 39249768, 166656772, 704069248, 2961699667, 12412521388, 51854046982, 216013684528, 897632738722, 3721813363288, 15401045060572, 63616796642368, 262357557683422, 1080387930269464, 4443100381114156
Offset: 0
a(3) = 8 because there are 5 ordered trees on 3 edges and two of the trees have 2 two-element anti-chain each, one of the trees has three two element anti-chains, one of the trees has one two element anti-chain and the last tree does not have any two-element anti-chains. Hence in ordered trees on 3 edges there are a total of (2)(2)+1(3)+1(1) = 8 two element anti-chains.
- Robert Israel, Table of n, a(n) for n = 0..1650
- Miklós Bóna, Surprising Symmetries in Objects Counted by Catalan Numbers, Electronic J. Combin., 19 (2012), #P62, eq. (2).
- Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
- Lifoma Salaam, Combinatorial statistics on phylogenetic trees, Ph.D. Dissertation, Howard University, Washington D.C., 2008.
- Sittipong Thamrongpairoj, Dowling Set Partitions, and Positional Marked Patterns, Ph. D. Dissertation, University of California-San Diego (2019).
-
0, seq((n+1)*(2*n-1)!/(n!*(n-1)!) - 2^(2*n-1), n=1..30); # Robert Israel, Feb 02 2016
-
a[0] = 0; a[n_] := (n+1)(2n-1)!/(n! (n-1)!) - 2^(2n-1);
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 19 2018, from Maple *)
A139263
Number of two element anti-chains in Riordan trees on n edges (also called non-redundant trees, i.e., ordered trees where no vertex has out-degree equal to 1).
Original entry on oeis.org
0, 0, 1, 3, 14, 48, 172, 580, 1941, 6373, 20725, 66763, 213575, 679141, 2148948, 6771068, 21257741, 66529077, 207639925, 646480555, 2008458669, 6227766899, 19277394308, 59577651108, 183865477474, 566700165898, 1744578701517, 5364804428455, 16480883532586, 50582859417868, 155114365434224
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 35); [0,0] cat Coefficients(R!( (1 -x -Sqrt(1-2*x-3*x^2))*Sqrt(1-2*x-3*x^2)/(2*(1+x)*(1-2*x-3*x^2)^2) )); // G. C. Greubel, Jun 02 2020
-
a:= proc(n) option remember; `if`(n<4, [0$2, 1, 3][n+1],
((4*n-3)*(n-2)*a(n-1)+(2*n+9)*(n-2)*a(n-2)-3*
(4*n-9)*n*a(n-3)-9*(n-1)*n*a(n-4))/(n*(n-2)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 02 2020
-
CoefficientList[Series[(1 -x -Sqrt[1-2*x-3*x^2])*Sqrt[1-2*x-3*x^2]/(2*(1+x)*(1 - 2*x-3*x^2)^2), {x, 0, 35}], x] (* G. C. Greubel, Jun 02 2020 *)
-
default(seriesprecision, 50)
f(x) = 1/sqrt(1-2*x-3*x^2);
r(x) = (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x));
a(n) = polcoef(x^2*r(x)^2*f(x)^3, n, x);
for(n=0, 30, print1(a(n), ",")) \\ Petros Hadjicostas, Jun 02 2020
-
r(x)=(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x))
m(x)=(1-x-sqrt(1-2*x-3*x^2))/(2*x^2)
g(x)=derivative(x*r(x),x)
a(x)=x^2*(x*m(x)+1)^3*g(x)^3/r(x)
taylor(a(x),x,0,30).list() # Petros Hadjicostas, Jun 02 2020
Comments