cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A029760 A sum with next-to-central binomial coefficients of even order, Catalan related.

Original entry on oeis.org

1, 8, 47, 244, 1186, 5536, 25147, 112028, 491870, 2135440, 9188406, 39249768, 166656772, 704069248, 2961699667, 12412521388, 51854046982, 216013684528, 897632738722, 3721813363288, 15401045060572, 63616796642368, 262357557683422, 1080387930269464
Offset: 0

Views

Author

Keywords

Comments

Proof by induction.
a(n) = total area below paths consisting of steps east (1,0) and north (0,1) from (0,0) to (n+2,n+2) that stay weakly below y=x. For example, the two paths with n=0 are
. _|.....|
The first has area 1 below it, the second area 0 and so a(0)=1. - David Callan, Dec 09 2004
Convolution of A000346 with A001700. - Philippe Deléham, May 19 2009

Crossrefs

Programs

  • Mathematica
    a[n_] := (n+3)^2 CatalanNumber[n+2]/2 - 2^(2n+3);
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Sep 25 2018 *)

Formula

a(n) = 4^(n+1)*Sum_{k=1..n+1} binomial(2k, k-1)/4^k = ((n+3)^2)*C(n+2)/2-2^(2*n+3), C = Catalan. Also a(n+1)=4*a(n)+binomial(2(n+2), n+1).
G.f.: (d/dx)c(x)/(1-4*x), where c(x) = g.f. for Catalan numbers; convolution of A001791 and powers of 4. G.f. also c(x)^2/(1-4*x)^(3/2); convolution of Catalan numbers A000108 C(n), n >= 1, with A002457; convolution of A008549(n), n >= 1, with A000984 (central binomial coefficients).
a(n) = Sum_{k=0..n+1} A039598(n+1,k)*k^2. - Philippe Deléham, Dec 16 2007

A129182 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n such that the area between the x-axis and the path is k (n>=0; 0<=k<=n^2).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 3, 0, 3, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 4, 0, 6, 0, 7, 0, 7, 0, 5, 0, 5, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 5, 0, 10, 0, 14, 0, 17, 0, 16, 0, 16, 0, 14, 0, 11, 0, 9, 0, 7, 0, 5, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Emeric Deutsch, Apr 08 2007

Keywords

Comments

Row n has n^2 + 1 terms.
Row sums are the Catalan numbers (A000108).
Sum(k*T(n,k), k=0..n^2) = A008549(n).
Sums along falling diagonals give A005169. - Joerg Arndt, Mar 29 2014
T(2n,4n) = A240008(n). - Alois P. Heinz, Mar 30 2014

Examples

			T(4,10) = 3 because we have UDUUUDDD, UUUDDDUD and UUDUDUDD.
Triangle starts:
1;
0,1;
0,0,1,0,1;
0,0,0,1,0,2,0,1,0,1;
0,0,0,0,1,0,3,0,3,0,3,0,2,0,1,0,1;
0,0,0,0,0,1,0,4,0,6,0,7,0,7,0,5,0,5,0,3,0,2,0,1,0,1;
Transposed triangle (A239927) begins:
00:  1;
01:  0, 1;
02:  0, 0, 1;
03:  0, 0, 0, 1;
04:  0, 0, 1, 0, 1;
05:  0, 0, 0, 2, 0, 1;
06:  0, 0, 0, 0, 3, 0, 1;
07:  0, 0, 0, 1, 0, 4, 0, 1;
08:  0, 0, 0, 0, 3, 0, 5, 0, 1;
09:  0, 0, 0, 1, 0, 6, 0, 6, 0, 1;
10:  0, 0, 0, 0, 3, 0, 10, 0, 7, 0, 1;
11:  0, 0, 0, 0, 0, 7, 0, 15, 0, 8, 0, 1;
12:  0, 0, 0, 0, 2, 0, 14, 0, 21, 0, 9, 0, 1;
13:  0, 0, 0, 0, 0, 7, 0, 25, 0, 28, 0, 10, 0, 1;
14:  0, 0, 0, 0, 1, 0, 17, 0, 41, 0, 36, 0, 11, 0, 1;
15:  0, 0, 0, 0, 0, 5, 0, 35, 0, 63, 0, 45, 0, 12, 0, 1;
16:  0, 0, 0, 0, 1, 0, 16, 0, 65, 0, 92, 0, 55, 0, 13, 0, 1;
17:  0, 0, 0, 0, 0, 5, 0, 40, 0, 112, 0, 129, 0, 66, 0, 14, 0, 1;
18:  0, 0, 0, 0, 0, 0, 16, 0, 86, 0, 182, 0, 175, 0, 78, 0, 15, 0, 1;
19:  0, 0, 0, 0, 0, 3, 0, 43, 0, 167, 0, 282, 0, 231, 0, 91, 0, 16, 0, 1;
20:  0, 0, 0, 0, 0, 0, 14, 0, 102, 0, 301, 0, 420, 0, 298, 0, 105, 0, 17, 0, 1;
... - _Joerg Arndt_, Mar 25 2014
		

Crossrefs

Cf. A000108, A008549, A139262, A240008, A143951 (column sums).

Programs

  • Maple
    G:=1/(1-t*z*g[1]): for i from 1 to 11 do g[i]:=1/(1-t^(2*i+1)*z*g[i+1]) od: g[12]:=0: Gser:=simplify(series(G,z=0,11)): for n from 0 to 7 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 7 do seq(coeff(P[n],t,j),j=0..n^2) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
           expand(b(x-1, y-1)*z^(y-1/2)+ b(x-1, y+1)*z^(y+1/2))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 29 2014
  • Mathematica
    b[x_, y_] := b[x, y] = If[y<0 || y>x, 0, If[x==0, 1, Expand[b[x-1, y-1]*z^(y-1/2) + b[x-1, y+1]*z^(y+1/2)]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)

Formula

G.f.: G(t,z) given by G(t,z) = 1+t*z*G(t,t^2*z)*G(t,z).
Sum_{k=0..n^2} (n^2-k)/2 * T(n,k) = A139262(n). - Alois P. Heinz, Mar 31 2018

A139263 Number of two element anti-chains in Riordan trees on n edges (also called non-redundant trees, i.e., ordered trees where no vertex has out-degree equal to 1).

Original entry on oeis.org

0, 0, 1, 3, 14, 48, 172, 580, 1941, 6373, 20725, 66763, 213575, 679141, 2148948, 6771068, 21257741, 66529077, 207639925, 646480555, 2008458669, 6227766899, 19277394308, 59577651108, 183865477474, 566700165898, 1744578701517, 5364804428455, 16480883532586, 50582859417868, 155114365434224
Offset: 0

Views

Author

Lifoma Salaam, Apr 12 2008

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); [0,0] cat Coefficients(R!( (1 -x -Sqrt(1-2*x-3*x^2))*Sqrt(1-2*x-3*x^2)/(2*(1+x)*(1-2*x-3*x^2)^2) )); // G. C. Greubel, Jun 02 2020
  • Maple
    a:= proc(n) option remember; `if`(n<4, [0$2, 1, 3][n+1],
          ((4*n-3)*(n-2)*a(n-1)+(2*n+9)*(n-2)*a(n-2)-3*
           (4*n-9)*n*a(n-3)-9*(n-1)*n*a(n-4))/(n*(n-2)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 02 2020
  • Mathematica
    CoefficientList[Series[(1 -x -Sqrt[1-2*x-3*x^2])*Sqrt[1-2*x-3*x^2]/(2*(1+x)*(1 - 2*x-3*x^2)^2), {x, 0, 35}], x] (* G. C. Greubel, Jun 02 2020 *)
  • PARI
    default(seriesprecision, 50)
    f(x) = 1/sqrt(1-2*x-3*x^2);
    r(x) = (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x));
    a(n) = polcoef(x^2*r(x)^2*f(x)^3, n, x);
    for(n=0, 30, print1(a(n), ",")) \\ Petros Hadjicostas, Jun 02 2020
    
  • Sage
    r(x)=(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x))
    m(x)=(1-x-sqrt(1-2*x-3*x^2))/(2*x^2)
    g(x)=derivative(x*r(x),x)
    a(x)=x^2*(x*m(x)+1)^3*g(x)^3/r(x)
    taylor(a(x),x,0,30).list() # Petros Hadjicostas, Jun 02 2020
    

Formula

G.f.: A(x) = x^2 * (x*M(x) + 1)^3 * (d(x*R(x))/dx)^3/R(x), where M is the generating function for the Motzkin numbers and R is the generating function for the Riordan numbers.
From Petros Hadjicostas, Jun 02 2020: (Start)
Here R(x) = (1 + x - sqrt(1 - 2*x - 3*x^2))/(2*x*(1-x)) = g.f. of A005043 and M(x) = (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2) = g.f. of A001006.
If we let s(x) = sqrt(1 - 2*x - 3*x^2), then A(x) = x^2*((1 + x - s(x))/(2*x*(1 + x)))^2/s(x)^3 (see p. 40 in Salaam (2008)).
Alternatively, we may write A(x) = x^2 * R(x)^2 * B(x), where B(x) = g.f. of (A102839(n+1): n >= 0). (End)

Extensions

a(10)-a(30) from Petros Hadjicostas, Jun 02 2020
Showing 1-3 of 3 results.