cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178904 This should be related to the Coxeter transformations of the posets of partitions in rectangular boxes of size m times n.

Original entry on oeis.org

1, -1, -1, 0, -1, 0, 0, 1, 1, 0, 0, -1, 1, -1, 0, 0, 1, -1, -1, 1, 0, 0, -1, 2, -3, 2, -1, 0, 0, 1, -3, 4, 4, -3, 1, 0, 0, -1, 3, -6, 8, -6, 3, -1, 0, 0, 1, -3, 9, -13, -13, 9, -3, 1, 0, 0, -1, 4, -11, 19, -23, 19, -11, 4, -1, 0, 0, 1, -5, 13, -27, 39, 39, -27, 13, -5, 1, 0, 0, -1, 5, -17, 38, -61, 71, -61, 38, -17, 5, -1, 0
Offset: 0

Views

Author

F. Chapoton, Jun 22 2010

Keywords

Comments

This table is symmetric: a(m,n)=a(n,m) for all m,n>=0.

Examples

			a(0,0) = 1, a(1,0) = a(0,1) = -1.
Triangle begins:
   1;
  -1, -1;
   0, -1,  0;
   0,  1,  1,  0;
   0, -1,  1, -1,  0;
   0,  1, -1, -1,  1,  0;
   0, -1,  2, -3,  2, -1, 0;
   ...
		

Crossrefs

Programs

  • Mathematica
    b[m_, n_] := (-1)^Max[m, n]*Binomial[m+n, n]; A[m_, n_] := DivisorSum[ n+m+1, b[Floor[m/#], Floor[n/#]]*MoebiusMu[#]&]/(m+n+1); Table[A[m-n, n], {m, 0, 12}, {n, 0, m}] // Flatten (* Jean-François Alcover, Feb 23 2017, adapted from Python *)
  • Sage
    def twisted_binomial(m, n):
        return (-1)**max(m, n) * binomial(m + n, n)
    def coefficients_A(m, n):
        return sum(twisted_binomial(m // d, n // d) * moebius(d)
               for d in divisors(m + n + 1)) / (m + n + 1)
    matrix(ZZ, 8, 8, coefficients_A)

Extensions

Terms a(82) onward added by G. C. Greubel, Dec 10 2017