A178927 Number of partitions into a triangular number of parts.
1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 15, 19, 26, 32, 42, 54, 69, 86, 111, 137, 173, 215, 268, 329, 409, 499, 614, 748, 914, 1106, 1346, 1621, 1958, 2352, 2827, 3380, 4048, 4821, 5746, 6824, 8102, 9587, 11346, 13383, 15781, 18566, 21824, 25597, 30007, 35100, 41029
Offset: 0
Examples
For example there are 7 unrestricted partitions of 5, namely: 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1 and 1+1+1+1+1. Of these we allow only those with 1,3,6,10,... parts. These are 5, 3+1+1 and 2+2+1. So a(5)=3.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..8000 (terms 0..2000 from Alois P. Heinz)
Crossrefs
Cf. A007294.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0 or i=1, `if`(issqr( 1+8*(t+n)), 1, 0), b(n, i-1, t)+b(n-i, min(i, n-i), t+1)) end: a:= n-> b(n$2, 0): seq(a(n), n=0..80); # Alois P. Heinz, Jul 29 2017
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1, If[Sqrt[1 + 8(t + n)] // IntegerQ, 1, 0], b[n, i - 1, t] + b[n - i, Min[i, n - i], t + 1]]; a[n_] := b[n, n, 0]; a /@ Range[0, 80] (* Jean-François Alcover, Nov 11 2020, after Alois P. Heinz *)
-
Sage
A178927 = lambda n: 1 if n == 0 else sum(number_of_partitions(n,k=tri) for tri in [1..n] if is_triangular_number(tri)) # [D. S. McNeil, Dec 30 2010]
Formula
G.f.: Sum_{i>=0} x^(i*(i+1)/2) / Product_{j=1..i*(i+1)/2} (1 - x^j). - Ilya Gutkovskiy, May 07 2017