cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178927 Number of partitions into a triangular number of parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 15, 19, 26, 32, 42, 54, 69, 86, 111, 137, 173, 215, 268, 329, 409, 499, 614, 748, 914, 1106, 1346, 1621, 1958, 2352, 2827, 3380, 4048, 4821, 5746, 6824, 8102, 9587, 11346, 13383, 15781, 18566, 21824, 25597, 30007, 35100, 41029
Offset: 0

Views

Author

David S. Newman, Dec 29 2010

Keywords

Examples

			For example there are 7 unrestricted partitions of 5, namely: 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1 and 1+1+1+1+1. Of these we allow only those with 1,3,6,10,... parts.  These are 5, 3+1+1 and 2+2+1. So a(5)=3.
		

Crossrefs

Cf. A007294.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0 or i=1, `if`(issqr(
          1+8*(t+n)), 1, 0), b(n, i-1, t)+b(n-i, min(i, n-i), t+1))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Jul 29 2017
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1, If[Sqrt[1 + 8(t + n)] // IntegerQ, 1, 0], b[n, i - 1, t] + b[n - i, Min[i, n - i], t + 1]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 80] (* Jean-François Alcover, Nov 11 2020, after Alois P. Heinz *)
  • Sage
    A178927 = lambda n: 1 if n == 0 else sum(number_of_partitions(n,k=tri) for tri in [1..n] if is_triangular_number(tri)) # [D. S. McNeil, Dec 30 2010]

Formula

G.f.: Sum_{i>=0} x^(i*(i+1)/2) / Product_{j=1..i*(i+1)/2} (1 - x^j). - Ilya Gutkovskiy, May 07 2017