A178946 a(n) = n*(n+1)*(2*n+1)/6 - n*floor(n/2).
1, 3, 11, 22, 45, 73, 119, 172, 249, 335, 451, 578, 741, 917, 1135, 1368, 1649, 1947, 2299, 2670, 3101, 3553, 4071, 4612, 5225, 5863, 6579, 7322, 8149, 9005, 9951, 10928, 12001, 13107, 14315, 15558, 16909, 18297, 19799, 21340, 23001
Offset: 1
Keywords
Examples
(1/2) *((1, 6, 19, 44, 85, 146, 231,...) + (1, 0, 3, 0, 5, 0, 7, 0, 9,...)) = (1, 3, 11, 22, 45, 73, 119,...).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Magma
[n*(n+1)*(2*n+1)/6 - n*Floor(n/2): n in [1..50]]; // Vincenzo Librandi, Sep 17 2013
-
Maple
A005900 := proc(n) n*(2*n^2+1)/3 ; end proc: A178946 := proc(n) if type(n,'even') then A005900(n)/2 ; else (A005900(n)+n)/2 ; end if;end proc: seq(A178946(n),n=1..60) ; # R. J. Mathar, Jan 03 2011 seq(k*(k+1)*(2*k+1)/6 - k*floor(k/2), k=1..100); # Wesley Ivan Hurt, Sep 17 2013
-
Mathematica
Table[n(n+1)(2n+1)/6-n*Floor[n/2], {n,100}] (* Wesley Ivan Hurt, Sep 17 2013 *) LinearRecurrence[{2,1,-4,1,2,-1},{1,3,11,22,45,73},50] (* Harvey P. Dale, Mar 20 2018 *)
Formula
a(n) = +2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6). G.f.: x*(1+x+4*x^2+x^4+x^3) / ( (1+x)^2*(x-1)^4 ). - R. J. Mathar, Jan 03 2011
Extensions
Better name using formula from Wesley Ivan Hurt, Joerg Arndt, Sep 17 2013
Comments