A308847
Expansion of e.g.f. exp(-2*x) / BesselI(0,2*x).
Original entry on oeis.org
1, -2, 2, 4, -14, -52, 284, 1496, -10958, -74372, 681652, 5656616, -62226116, -610306712, 7832965352, 88645228304, -1300254163918, -16676932459172, 275196007522436, 3944890321174664, -72330003541955564, -1145979961718846152, 23112838345877865752, 401070175407076000624, -8824400094691629670724
Offset: 0
-
nmax = 24; CoefficientList[Series[Exp[-2 x]/BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] Binomial[2 k, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
-
my(x='x+O('x^30)); Vec(serlaplace(exp(-2*x) / besseli(0,2*x))) \\ Michel Marcus, Jul 02 2019
A178956
Numerators in expansion of 1/(Sum_{n >= 0} (x^n/n!)*binomial(2n,n)/(n+1)).
Original entry on oeis.org
1, -1, 0, 1, 1, -1, -7, -13, 169, 233, 17, -18847, -43957, 26023, 429007, 31505483, -31381783, -753299101, -7372705283, 195152846389, 632396244331, -52258919107, -447065769153911, -13584264183406001, 34831349327448893, 674219621951483119, 2113978805943481381, -6602691591860999071, -370308752490094361609, -95867348590727618473, 752151788353653780085507
Offset: 0
1, -1, 0, 1/6, 1/12, -1/60, -7/180, -13/1008, 169/20160, 233/25920, 17/14175, -18847/6652800, -43957/23950080, 26023/141523200, 429007/544864320, 31505483/100590336000, ...
A178957
Denominators in expansion of 1/(Sum_{n >= 0} (x^n/n!)*binomial(2n,n)/(n+1)).
Original entry on oeis.org
1, 1, 1, 6, 12, 60, 180, 1008, 20160, 25920, 14175, 6652800, 23950080, 141523200, 544864320, 100590336000, 213497856000, 3952082534400, 200074178304000, 3577797070848000, 15595525693440000, 51711479930880000, 28100018194440192000, 1846572624206069760000, 14101100039391805440000, 168600109166641152000000, 2100476360034404352000000, 6405217323775501271040000, 418802671169936621568000000, 2506168365572477878272000000, 2368329105465991594967040000000
Offset: 0
A308850
Expansion of e.g.f. exp(-2*x) / (BesselI(0,2*x) + BesselI(1,2*x)).
Original entry on oeis.org
1, -3, 8, -17, 18, 58, -364, 369, 6194, -37382, -28848, 1717274, -8592644, -47472804, 918146560, -2911313551, -61122074382, 806675821162, 46813084592, -105331573943466, 1018198168087636, 6417696715221572, -247555432672498872, 1535509971584425358, 34028097257000628028, -764203552200012087252
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[-2 x]/(BesselI[0, 2 x] + BesselI[1, 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] Binomial[2 k + 1, k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}]
A328006
Expansion of e.g.f. 1 / (1 - Sum_{k>=1} binomial(2*k,k) * x^k / (k + 1)!).
Original entry on oeis.org
1, 1, 4, 23, 174, 1642, 18596, 245737, 3711294, 63056858, 1190408544, 24720216578, 560011664724, 13743710272060, 363241612472368, 10286092411744025, 310694791014710206, 9971177817032175594, 338830529059491098336, 12153453467291303419246, 458873804279349884222364
Offset: 0
-
seq(n!*coeff(series(1/(2 - exp(2*x) * (BesselI(0, 2*x) - BesselI(1, 2*x))), x, 21), x, n), n = 0..20); # Vaclav Kotesovec, Oct 02 2019
-
nmax = 20; CoefficientList[Series[1/(2 - Exp[2 x] (BesselI[0, 2 x] - BesselI[1, 2 x])), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] CatalanNumber[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
Showing 1-5 of 5 results.
Comments