cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179001 Partial sums of floor(Fibonacci(n)/3).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 8, 15, 26, 44, 73, 121, 198, 323, 526, 855, 1387, 2248, 3641, 5896, 9544, 15447, 24999, 40455, 65463, 105927, 171399, 277336, 448745, 726091, 1174847, 1900950, 3075809, 4976771, 8052592, 13029376, 21081981, 34111370, 55193365, 89304750
Offset: 0

Views

Author

Mircea Merca, Jan 03 2011

Keywords

Comments

Partial sums of A004696.

Examples

			a(9) = 0 + 0 + 0 + 0 + 1 + 1 + 2 + 4 + 7 + 11 = 26.
		

Crossrefs

Cf. A004696.

Programs

  • Magma
    [Floor(Fibonacci(n+2)/3-3*n/8-1/6): n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
  • Maple
    A179001 := proc(n) add( floor(combinat[fibonacci](i)/3),i=0..n) ; end proc:
  • Mathematica
    Accumulate[Floor[Fibonacci[Range[0,40]]/3]] (* Harvey P. Dale, Jun 13 2022 *)

Formula

a(n) = round(Fibonacci(n+2)/3 - 3*n/8 - 11/24).
a(n) = round(Fibonacci(n+2)/3 - 3*n/8 - 1/3).
a(n) = floor(Fibonacci(n+2)/3 - 3*n/8 - 1/6).
a(n) = ceiling(Fibonacci(n+2)/3 - 3*n/8 - 3/4).
a(n) = a(n-8) + Fibonacci(n-1) + Fibonacci(n-3) - 3, n > 8.
a(n) = 2*a(n-1) - a(n-3) + a(n-8) - 2*a(n-9) + a(n-11), n > 10.
G.f.: -x^4*(1 + x^4 + x^3) / ( (1+x)*(x^2+1)*(x^2+x-1)*(x^4+1)*(x-1)^2 ).