cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259102 Composite repunits with a prime number of 1's.

Original entry on oeis.org

111, 11111, 1111111, 11111111111, 1111111111111, 11111111111111111, 11111111111111111111111111111, 1111111111111111111111111111111, 1111111111111111111111111111111111111, 11111111111111111111111111111111111111111, 1111111111111111111111111111111111111111111
Offset: 1

Views

Author

N. J. A. Sloane, Jun 23 2015

Keywords

Crossrefs

Programs

  • Maple
    f:=n->(10^n-1)/9; [f(3),f(5),f(7),f(11),f(13),f(17),f(29),f(31),f(37),f(41),f(43),f(47)];  # cf. A004023
    # second Maple program:
    r:= n-> (10^n-1)/9:
    b:= proc(n) option remember; local p;
          p:=`if`(n=1, 1, b(n-1));
          do p:= nextprime(p);
             if not isprime(r(p)) then return p fi
          od
        end:
    a:= n-> r(b(n)):
    seq(a(n), n=1..15);  # Alois P. Heinz, Jun 25 2015

A199979 Nonprime numbers whose multiplicative digital root is 1.

Original entry on oeis.org

1, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 11111111111111111111, 111111111111111111111
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2011

Keywords

Comments

1 and the composite repunits.
Number of 1's in a(n) is in A179005. Complement of A004022 with respect to A002275.

Examples

			1111 has a multiplicative digital root of 1 and it is the product of 11 and 101, therefore it is in the sequence.
11 has a multiplicative digital root of 1 but it is a prime number and therefore it is not in the sequence.
		

Crossrefs

Cf. A004022 (primes whose multiplicative digital root is 1).

Programs

  • Mathematica
    Select[Table[(10^n - 1)/9, {n, 20}], Not[PrimeQ[#]] &] (* Alonso del Arte, Nov 23 2011 *)
Showing 1-2 of 2 results.