A179058 Number of non-attacking placements of 3 rooks on an n X n board.
0, 0, 6, 96, 600, 2400, 7350, 18816, 42336, 86400, 163350, 290400, 490776, 794976, 1242150, 1881600, 2774400, 3995136, 5633766, 7797600, 10613400, 14229600, 18818646, 24579456, 31740000, 40560000, 51333750, 64393056, 80110296
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Seth Chaiken, Christopher R. H. Hanusa and Thomas Zaslavsky, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016-2020.
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Rook Complement Graph.
- Eric Weisstein's World of Mathematics, Rook Graph.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
Mathematica
(* Start from Eric W. Weisstein, Sep 05 2017 *) Table[3! Binomial[n, 3]^2, {n, 20}] 3! Binomial[Range[20], 3]^2 LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 6, 96, 600, 2400, 7350}, 20] CoefficientList[Series[-((6 x^2 (1 + 9 x + 9 x^2 + x^3))/(-1 + x)^7), {x, 0, 20}], x] (* End *) a[n_] := If[n<3, 0, Coefficient[n!*LaguerreL[n, x], x, n-3] // Abs]; Array[a, 30] (* Jean-François Alcover, Jun 14 2018, after A144084 *)
-
PARI
a(n) = 3!*binomial(n, 3)^2; \\ Andrew Howroyd, Feb 13 2018
Formula
a(n) = 3!*binomial(n, 3)^2.
a(n) = (n^2*(2-3*n+n^2)^2)/6. - Colin Barker, Jan 08 2013
G.f.: -6*x^3*(x+1)*(x^2+8*x+1) / (x-1)^7. - Colin Barker, Jan 08 2013
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Eric W. Weisstein, Sep 05 2017
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=3} 1/a(n) = 3*Pi^2/2 - 117/8.
Sum_{n>=3} (-1)^(n+1)/a(n) = 21/8 - Pi^2/4. (End)
Comments