cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179059 Number of non-attacking placements of 4 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 24, 600, 5400, 29400, 117600, 381024, 1058400, 2613600, 5880600, 12269400, 24048024, 44717400, 79497600, 135945600, 224726400, 360561024, 563376600, 859685400, 1284221400, 1881864600, 2709885024, 3840540000, 5364060000
Offset: 1

Views

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Crossrefs

Column k=4 of A144084.
Cf. A179058 (3 rooks), A179060 (5 rooks).

Programs

  • Mathematica
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,0,0,24,600,5400,29400,117600,381024},40] (* Harvey P. Dale, Feb 19 2013 *)
    a[n_] := If[n<4, 0, Coefficient[n!*LaguerreL[n, x], x, n-4] // Abs];
    Array[a, 30] (* Jean-François Alcover, Jun 14 2018, after A144084 *)
  • PARI
    a(n) = 4! * binomial(n, 4)^2; \\ Andrew Howroyd, Feb 13 2018

Formula

a(n) = 4! * binomial(n, 4)^2.
From Colin Barker, Jan 08 2013: (Start)
a(n) = (n^2*(-6+11*n-6*n^2+n^3)^2)/24.
G.f.: -24*x^4*(x^4 +16*x^3 +36*x^2 +16*x +1) / (x -1)^9.
(End)
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=4} 1/a(n) = (20*Pi^2 - 197)/9.
Sum_{n>=4} (-1)^n/a(n) = (64*log(2) - 44)/9. (End)