cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A179096 Rectified hexateron (5-simplex) numbers: the coefficient of x^(2n-2) in (1+x+x^2+...+x^(n-1))^6.

Original entry on oeis.org

0, 1, 15, 90, 336, 951, 2247, 4676, 8856, 15597, 25927, 41118, 62712, 92547, 132783, 185928, 254864, 342873, 453663, 591394, 760704, 966735, 1215159, 1512204, 1864680, 2280005, 2766231, 3332070, 3986920, 4740891, 5604831, 6590352
Offset: 0

Views

Author

Michael A. Jackson, Jun 29 2010

Keywords

Comments

a(n) is the number of ordered 6-tuples (j_1,...,j_6) with 0 <= j_i <= n-1 and Sum_{i=1..6} j_i = 2n-2. - Robert Israel, Feb 17 2016

Crossrefs

Programs

  • Maple
    F:= n -> coeff(add(x^i,i=0..n-1)^6,x,2*n-2):
    seq(F(n),n=0..100); # Robert Israel, Feb 17 2016
  • Mathematica
    f[n_] := CoefficientList[ Series[ Sum[x^k, {k, 0, n - 1}]^6, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 36] (* Robert G. Wilson v, Jul 30 2010 *)
  • PARI
    a(n) = polcoeff(((x^n-1)/(x-1))^6, 2*n-2); \\ Michel Marcus, Feb 17 2016

Formula

Conjectures: a(n) = n*(n+1)*(13*n^3+12*n^2-7*n+12)/60. G.f.: x*(1+9*x+x^3+15*x^2)/(x-1)^6. - R. J. Mathar, Jul 06 2010
These conjectures are true, see A179095 for proof.

A179097 Rectified heptapeton (6-simplex) numbers: the coefficient of x^(2n-2) in (1+x+x^2+...+x^(n-1))^7.

Original entry on oeis.org

0, 1, 21, 161, 728, 2415, 6538, 15330, 32292, 62601, 113575, 195195, 320684, 507143, 776244, 1154980, 1676472, 2380833, 3316089, 4539157, 6116880, 8127119, 10659902, 13818630, 17721340, 22502025, 28312011, 35321391, 43720516
Offset: 0

Views

Author

Michael A. Jackson, Jun 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := CoefficientList[ Series[ Sum[x^k, {k, 0, n - 1}]^7, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 33] (* Robert G. Wilson v, Jul 30 2010 *)
  • PARI
    a(n) = polcoeff(((x^n-1)/(x-1))^7, 2*n-2); \\ Michel Marcus, Feb 17 2016

Formula

Conjecture: a(n) = n*(40+26*n+5*n^2+75*n^3+75*n^4+19*n^5)/240. G.f.: x*(1+14*x+35*x^2+7*x^3)/(1-x)^7. - Colin Barker, Jan 09 2012
These conjectures are true, see A179095 for proof.

Extensions

More terms from Robert G. Wilson v, Jul 30 2010

A179098 Rectified 7-simplex number: the coefficient of x^(2n-2) in (1+x+x^2+...+x^(n-1))^8.

Original entry on oeis.org

0, 1, 28, 266, 1428, 5475, 16808, 44052, 102552, 217701, 429220, 796510, 1405196, 2374983, 3868944, 6104360, 9365232, 14016585, 20520684, 29455282, 41534020, 57629099, 78796344, 106302780, 141656840, 186641325, 243349236, 314222598
Offset: 0

Views

Author

Michael A. Jackson, Jun 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := CoefficientList[ Series[ Sum[ x^k, {k, 0, n - 1}]^8, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 33] (* Robert G. Wilson v, Jul 30 2010 *)
  • PARI
    a(n) = polcoeff(((x^n-1)/(x-1))^8, 2*n-2); \\ Michel Marcus, Feb 17 2016

Formula

Conjectures: a(n) = n*(90+77*n+140*n^3+210*n^4+98*n^5+15*n^6)/630. G.f.: x*(1+20*x+70*x^2+28*x^3+x^4)/(1-x)^8. - Colin Barker, Jan 09 2012
These conjectures are true, see A179095 for proof.

Extensions

More terms from Robert G. Wilson v, Jul 30 2010

A179099 Rectified 8-simplex numbers: the coefficient of x^(2n-2) in (1+x+x^2+...+x^(n-1))^9.

Original entry on oeis.org

0, 1, 36, 414, 2598, 11385, 39303, 114387, 292743, 677556, 1446445, 2889315, 5459103, 9838062, 17022474, 28428930, 46025562, 72491859, 111410946, 167498452, 246872340, 357368319, 508905705, 713908845, 987789465, 1349495550
Offset: 0

Views

Author

Michael A. Jackson, Jun 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := CoefficientList[ Series[ Sum[ x^k, {k, 0, n - 1}]^9, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 33] (* Robert G. Wilson v, Jul 30 2010 *)
  • PARI
    a(n) = polcoeff(((x^n-1)/(x-1))^9, 2*n-2); \\ Michel Marcus, Feb 17 2016

Formula

Empirical G.f.: x*(1+27*x+126*x^2+84*x^3+9*x^4)/(1-x)^9. - Colin Barker, Jun 20 2012
This conjecture is true, see A179095 for proof.

Extensions

More terms from Robert G. Wilson v, Jul 30 2010
Showing 1-4 of 4 results.