cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Michael A. Jackson

Michael A. Jackson's wiki page.

Michael A. Jackson has authored 5 sequences.

A179096 Rectified hexateron (5-simplex) numbers: the coefficient of x^(2n-2) in (1+x+x^2+...+x^(n-1))^6.

Original entry on oeis.org

0, 1, 15, 90, 336, 951, 2247, 4676, 8856, 15597, 25927, 41118, 62712, 92547, 132783, 185928, 254864, 342873, 453663, 591394, 760704, 966735, 1215159, 1512204, 1864680, 2280005, 2766231, 3332070, 3986920, 4740891, 5604831, 6590352
Offset: 0

Author

Michael A. Jackson, Jun 29 2010

Keywords

Comments

a(n) is the number of ordered 6-tuples (j_1,...,j_6) with 0 <= j_i <= n-1 and Sum_{i=1..6} j_i = 2n-2. - Robert Israel, Feb 17 2016

Crossrefs

Programs

  • Maple
    F:= n -> coeff(add(x^i,i=0..n-1)^6,x,2*n-2):
    seq(F(n),n=0..100); # Robert Israel, Feb 17 2016
  • Mathematica
    f[n_] := CoefficientList[ Series[ Sum[x^k, {k, 0, n - 1}]^6, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 36] (* Robert G. Wilson v, Jul 30 2010 *)
  • PARI
    a(n) = polcoeff(((x^n-1)/(x-1))^6, 2*n-2); \\ Michel Marcus, Feb 17 2016

Formula

Conjectures: a(n) = n*(n+1)*(13*n^3+12*n^2-7*n+12)/60. G.f.: x*(1+9*x+x^3+15*x^2)/(x-1)^6. - R. J. Mathar, Jul 06 2010
These conjectures are true, see A179095 for proof.

A179097 Rectified heptapeton (6-simplex) numbers: the coefficient of x^(2n-2) in (1+x+x^2+...+x^(n-1))^7.

Original entry on oeis.org

0, 1, 21, 161, 728, 2415, 6538, 15330, 32292, 62601, 113575, 195195, 320684, 507143, 776244, 1154980, 1676472, 2380833, 3316089, 4539157, 6116880, 8127119, 10659902, 13818630, 17721340, 22502025, 28312011, 35321391, 43720516
Offset: 0

Author

Michael A. Jackson, Jun 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := CoefficientList[ Series[ Sum[x^k, {k, 0, n - 1}]^7, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 33] (* Robert G. Wilson v, Jul 30 2010 *)
  • PARI
    a(n) = polcoeff(((x^n-1)/(x-1))^7, 2*n-2); \\ Michel Marcus, Feb 17 2016

Formula

Conjecture: a(n) = n*(40+26*n+5*n^2+75*n^3+75*n^4+19*n^5)/240. G.f.: x*(1+14*x+35*x^2+7*x^3)/(1-x)^7. - Colin Barker, Jan 09 2012
These conjectures are true, see A179095 for proof.

Extensions

More terms from Robert G. Wilson v, Jul 30 2010

A179098 Rectified 7-simplex number: the coefficient of x^(2n-2) in (1+x+x^2+...+x^(n-1))^8.

Original entry on oeis.org

0, 1, 28, 266, 1428, 5475, 16808, 44052, 102552, 217701, 429220, 796510, 1405196, 2374983, 3868944, 6104360, 9365232, 14016585, 20520684, 29455282, 41534020, 57629099, 78796344, 106302780, 141656840, 186641325, 243349236, 314222598
Offset: 0

Author

Michael A. Jackson, Jun 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := CoefficientList[ Series[ Sum[ x^k, {k, 0, n - 1}]^8, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 33] (* Robert G. Wilson v, Jul 30 2010 *)
  • PARI
    a(n) = polcoeff(((x^n-1)/(x-1))^8, 2*n-2); \\ Michel Marcus, Feb 17 2016

Formula

Conjectures: a(n) = n*(90+77*n+140*n^3+210*n^4+98*n^5+15*n^6)/630. G.f.: x*(1+20*x+70*x^2+28*x^3+x^4)/(1-x)^8. - Colin Barker, Jan 09 2012
These conjectures are true, see A179095 for proof.

Extensions

More terms from Robert G. Wilson v, Jul 30 2010

A179099 Rectified 8-simplex numbers: the coefficient of x^(2n-2) in (1+x+x^2+...+x^(n-1))^9.

Original entry on oeis.org

0, 1, 36, 414, 2598, 11385, 39303, 114387, 292743, 677556, 1446445, 2889315, 5459103, 9838062, 17022474, 28428930, 46025562, 72491859, 111410946, 167498452, 246872340, 357368319, 508905705, 713908845, 987789465, 1349495550
Offset: 0

Author

Michael A. Jackson, Jun 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := CoefficientList[ Series[ Sum[ x^k, {k, 0, n - 1}]^9, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 33] (* Robert G. Wilson v, Jul 30 2010 *)
  • PARI
    a(n) = polcoeff(((x^n-1)/(x-1))^9, 2*n-2); \\ Michel Marcus, Feb 17 2016

Formula

Empirical G.f.: x*(1+27*x+126*x^2+84*x^3+9*x^4)/(1-x)^9. - Colin Barker, Jun 20 2012
This conjecture is true, see A179095 for proof.

Extensions

More terms from Robert G. Wilson v, Jul 30 2010

A179095 Rectified 5-cell numbers: the coefficient of x^{2n-2} in (1+x+x^2+ ... + x^{n-1})^5.

Original entry on oeis.org

0, 1, 10, 45, 135, 320, 651, 1190, 2010, 3195, 4840, 7051, 9945, 13650, 18305, 24060, 31076, 39525, 49590, 61465, 75355, 91476, 110055, 131330, 155550, 182975, 213876, 248535, 287245, 330310, 378045, 430776, 488840, 552585, 622370, 698565, 781551, 871720, 969475
Offset: 0

Author

Michael A. Jackson, Jun 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := CoefficientList[ Series[ Sum[x^k, {k, 0, n - 1}]^5, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 36] (* Robert G. Wilson v, Jul 30 2010 *)
  • PARI
    a(n) = polcoeff(((x^n-1)/(x-1))^5, 2*n-2); \\ Michel Marcus, Feb 17 2016
    
  • PARI
    A179095(n)=n*(11*n^3+6*n^2+n+6)\24 \\ M. F. Hasler, Feb 19 2016

Formula

Conjectures: a(n) = n*(11*n^3+6*n^2+n+6)/24. G.f.: x*(1+5*x+5*x^2)/(1-x)^5. - Colin Barker, Jan 09 2012
Comment from Doron Zeilberger, Feb 18 2016 (Start):
The conjectures in A179095-A179099 are true. Proof:
The geometric series 1+x+x^2+..+x^(n-1) = (1-x^n)/(1-x).
Hence for a fixed k (in the above cases k=5..9, but the argument holds in general)
the coefficient of x^(2*n-2) in (1+x+...+x^(n-1))^k =
coefficient of x^(2*n-2) in (1-x^n)^k*(1-x)^(-k) =
coefficient of x^(2*n-2) in (1-k*x^n + Sum of powers higher than x^(2*n-2)..)
= coefficient of x^(2*n-2) in (1-x)^(-k) -k*(the coefficient of x^(n-2) in (1-x)^(-k))
= (-1)^(2*n-2)*binomial(-k,2*n-2)- k* (-1)^(n-2)*binomial(-k,n-2)=
Using (-1)^m *binomial(-m,k)= binomial(m+k-1,k-1) this is
binomial(k+2*n-3,k-1) - k *binomial(k+n-3,k-1)
and this agrees with the conjectures for k=5..9 (End)
E.g.f.: exp(x)*x*(24 + 96*x + 72*x^2 + 11*x^3)/24. - Stefano Spezia, Mar 28 2023

Extensions

More terms from Robert G. Wilson v, Jul 30 2010