A179096 Rectified hexateron (5-simplex) numbers: the coefficient of x^(2n-2) in (1+x+x^2+...+x^(n-1))^6.
0, 1, 15, 90, 336, 951, 2247, 4676, 8856, 15597, 25927, 41118, 62712, 92547, 132783, 185928, 254864, 342873, 453663, 591394, 760704, 966735, 1215159, 1512204, 1864680, 2280005, 2766231, 3332070, 3986920, 4740891, 5604831, 6590352
Offset: 0
Links
- J. Conrad and Robert Israel, Table of n, a(n) for n = 0..1000 (n = 0..98 from J. Conrad)
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Maple
F:= n -> coeff(add(x^i,i=0..n-1)^6,x,2*n-2): seq(F(n),n=0..100); # Robert Israel, Feb 17 2016
-
Mathematica
f[n_] := CoefficientList[ Series[ Sum[x^k, {k, 0, n - 1}]^6, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 36] (* Robert G. Wilson v, Jul 30 2010 *)
-
PARI
a(n) = polcoeff(((x^n-1)/(x-1))^6, 2*n-2); \\ Michel Marcus, Feb 17 2016
Formula
Conjectures: a(n) = n*(n+1)*(13*n^3+12*n^2-7*n+12)/60. G.f.: x*(1+9*x+x^3+15*x^2)/(x-1)^6. - R. J. Mathar, Jul 06 2010
These conjectures are true, see A179095 for proof.
Comments