A179186 Numbers k such that phi(k) = phi(k+4), with Euler's totient function phi = A000010.
8, 14, 16, 20, 35, 52, 64, 91, 140, 148, 244, 292, 403, 455, 616, 628, 772, 801, 1011, 1024, 1108, 1144, 1252, 1270, 1295, 1456, 1588, 1684, 1820, 1828, 2030, 2164, 2452, 2623, 2644, 2660, 2692, 2932, 3028, 3216, 3321, 3508, 3988, 4264, 4340, 4372, 4612, 4804, 4852, 4948
Offset: 1
Keywords
References
- S. W. Graham, J. J. Holt, and C. Pomerance, "On the solutions to phi(n)=phi(n+k)", Number Theory in Progress, Proc. Intern. Conf. in Honor of 60th Birthday of A. Schinzel, Poland, 1997. Walter de Gruyter, 1999, pp. 867-82.
Links
- Jud McCranie, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- F. Firoozbakht, Puzzle 466: phi(n-1)=phi(n)=phi(n+1), in C. Rivera's Primepuzzles.
- Kevin Ford, Solutions of phi(n)=phi(n+k) and sigma(n)=sigma(n+k), arXiv:2002.12155 [math.NT], 2020.
Programs
-
Magma
[n: n in [1..5000] | EulerPhi(n) eq EulerPhi(n+4)]; // Vincenzo Librandi, Sep 08 2016
-
Mathematica
Select[Range[5000],EulerPhi[#]==EulerPhi[#+4]&] (* Harvey P. Dale, Feb 16 2011 *) SequencePosition[EulerPhi[Range[5000]],{x_,,,_,x_}][[;;,1]] (* Harvey P. Dale, Sep 12 2024 *)
-
PARI
{op=vector(N=4); for( n=1,1e4,if( op[n%N+1]+0==op[n%N+1]=eulerphi(n),print1(n-N,",")))}
Comments