cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179191 Expansion of o.g.f. (1/2)*(-1 + 1/sqrt(1 - 4*x - 4*x^2)).

Original entry on oeis.org

0, 1, 4, 16, 68, 296, 1312, 5888, 26672, 121696, 558464, 2574848, 11917952, 55345408, 257741824, 1203224576, 5629027072, 26383656448, 123868321792, 582414688256, 2742116907008, 12926036258816, 60998951747584, 288147689046016, 1362407763795968, 6447125560016896
Offset: 0

Views

Author

Clark Kimberling, Jul 01 2010

Keywords

Comments

G.f. A(x) satisfies A(x)^2 + A(x) = (x^2 + x)/(1 - 4*x - 4*x^2). - Michael Somos, Jan 28 2019

Examples

			G.f. = x + 4*x^2 + 16*x^3 + 68*x^4 + 296*x^5 + 1312*x^6 + 5888*x^7 + ....
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (-1 + 1/Sqrt(1-4*x-4*x^2))/2 )); // G. C. Greubel, Jan 25 2019
    
  • Mathematica
    CoefficientList[1/2 (-1 + (1-4x-4x^2)^(-1/2)) + O[x]^23, x] (* Jean-François Alcover, Jul 27 2018 *)
  • Maxima
    a(n):=sum(m*sum(sum(binomial(i-1,k-1)*binomial(i,n-i),i,k,n)*sum(binomial(j,2*j-m-k)*binomial(k,j),j,0,k)/k,k,m,n),m,1,n); /* Vladimir Kruchinin, Mar 11 2011 */
    a(n):=sum(2^(n-k-1)*binomial(n,k)*binomial(n-k,k),k,0,n); /* Vladimir Kruchinin, Mar 12 2015 */
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec((-1 +1/sqrt(1-4*x-4*x^2))/2)) \\ G. C. Greubel, Jan 25 2019
    
  • Sage
    ((-1 + 1/sqrt(1-4*x-4*x^2))/2).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 25 2019

Formula

G.f.: (1/2)*(-1 + 1/sqrt(1 - 4*x - 4*x^2)).
G.f.: A(x) = x*A001006(A000045(x)/x-1)/(1-x*A001006(A000045(x)/x-1)).
a(n) = Sum_{m=1..n} m*Sum_{k=m..n} (Sum_{i=k..n} binomial(i-1,k-1)*binomial(i,n-i))*(Sum_{j=0..k} binomial(j,2*j-m-k)*binomial(k,j))/k. - Vladimir Kruchinin, Mar 11 2011
a(n) = Sum_{k=0..n} 2^(n-k-1)*binomial(n,k)*binomial(n-k,k). - Vladimir Kruchinin, Mar 12 2015
From Vaclav Kotesovec, Jan 26 2019: (Start)
D-finite with recurrence: n*a(n) = 2*(2*n - 1)*a(n-1) + 4*(n-1)*a(n-2).
a(n) ~ 2^(n - 7/4) * (1 + sqrt(2))^(n + 1/2) / sqrt(Pi*n). (End)
0 = a(n)*(16*a(n+1) +24*a(n+2) -8*a(n+3)) + a(n+1)*(+8*a(n+1) +16*a(n+2) -6*a(n+3)) + a(n+2)*(-2*a(n+2) +a(n+3)) for all n in Z except n=-1. - Michael Somos, Jan 27 2019
a(n) = A006139(n)/2, n>0. - R. J. Mathar, Jan 24 2020