A277292
G.f. A(x) satisfies: Series_Reversion( A(x) + A(x)^2 ) = A(x) - A(x)^2.
Original entry on oeis.org
1, 1, 4, 21, 122, 758, 4958, 33509, 233810, 1641150, 12364368, 71807506, 1354944972, -33794258600, 2524565441138, -186642439700891, 16196862324254354, -1602823227559245434, 179707702260054046760, -22656977557634759678794, 3191199098536326709613676, -499206960572108744520132444, 86277300996554233583925645468, -16395890677314419248813441481150
Offset: 1
G.f.: A(x) = x + x^3 + 4*x^5 + 21*x^7 + 122*x^9 + 758*x^11 + 4958*x^13 + 33509*x^15 + 233810*x^17 + 1641150*x^19 + 12364368*x^21 +...
such that Series_Reversion( A(x) + A(x)^2 ) = A(x) - A(x)^2, where
A(x)^2 = x^2 + 2*x^4 + 9*x^6 + 50*x^8 + 302*x^10 + 1928*x^12 + 12849*x^14 + 88122*x^16 + 621022*x^18 + 4411180*x^20 +...
A(x) + A(x)^2 = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 9*x^6 + 21*x^7 + 50*x^8 + 122*x^9 + 302*x^10 + 758*x^11 + 1928*x^12 + 4958*x^13 + 12849*x^14 + 33509*x^15 + 88122*x^16 + 233810*x^17 + 621022*x^18 + 1641150*x^19 + 4411180*x^20 +...
Also,
A( A(x) + A(x)^2 ) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 +...
which equals the Catalan series (A000108).
-
{a(n) = my(Oxn=x*O(x^(2*n)), A = x +Oxn); for(i=1, 2*n, A = A + (x - subst(A+A^2, x, A-A^2 ))/2); polcoeff(A, 2*n-1)}
for(n=1,30,print1(a(n),", "))
A276909
E.g.f. A(x) satisfies: Series_Reversion( A(x)*exp(A(x)) ) = A(x)*exp(-A(x)).
Original entry on oeis.org
1, 0, 3, 0, 85, 0, 6111, 0, 872649, 0, 195062395, 0, 76208072733, 0, 12330526252695, 0, 125980697776559377, 0, -857710566759117989133, 0, 11428318296234746748941925, 0, -222333914273403535165432496561, 0, 6242434914385931957857138485252825, 0, -244888574110309970555770302512462694549, 0, 13082369513456349871152908238665975845490989, 0, -930879791318792717095933863751868808486774883065, 0
Offset: 1
E.g.f.: A(x) = x + 3*x^3/3! + 85*x^5/5! + 6111*x^7/7! + 872649*x^9/9! + 195062395*x^11/11! + 76208072733*x^13/13! + 12330526252695*x^15/15! + 125980697776559377*x^17/17! - 857710566759117989133*x^19/19! + 11428318296234746748941925*x^21/21! - 222333914273403535165432496561*x^23/23! + 6242434914385931957857138485252825*x^25/25! +...
such that Series_Reversion( A(x)*exp(A(x)) ) = A(x)*exp(-A(x)).
RELATED SERIES.
A(x)*exp(A(x)) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! + 1446*x^6/6! + 13888*x^7/7! + 156472*x^8/8! + 2034000*x^9/9! + 29724490*x^10/10! + 476806176*x^11/11! + 8502508884*x^12/12! + 174802753216*x^13/13! + 3768345692398*x^14/14! + 63300353418240*x^15/15! + 1386349221087856*x^16/16! + 149879079531401472*x^17/17! +...+ A276911(n)*x^n/n! +...
exp(A(x)) = 1 + x + x^2/2! + 4*x^3/3! + 13*x^4/4! + 116*x^5/5! + 661*x^6/6! + 8632*x^7/7! + 70617*x^8/8! + 1247248*x^9/9! + 13329001*x^10/10! + 285675776*x^11/11! + 3782734693*x^12/12! + 107823153088*x^13/13! + 1685127882621*x^14/14! + 28683829833856*x^15/15! + 574020572798641*x^16/16! + 133507199865641216*x^17/17! +...+ A276912(n)*x^n/n! +...
Also, A( A(x)*exp(A(x)) ) = -LambertW(-x), which begins:
A( A(x)*exp(A(x)) ) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! + 7776*x^6/6! + 117649*x^7/7! + 2097152*x^8/8! +...+ n^(n-1)*x^n/n! +...
-
{a(n) = my(A=x +x*O(x^n));
for(i=1,n, A = A + (x - subst(A*exp(A),x,A*exp(-A)))/2); n!*polcoeff(A,n)}
for(n=1, 30, print1(a(n), ", "))
-
{a(n) = my(V=[1], A=x); for(i=1, n\2+1, V = concat(V, [0, 0]); A = sum(m=1, #V, V[m]*x^m/m!) +x*O(x^#V); V[#V] = -(#V)!/2 * polcoeff( subst( A*exp(A), x, A*exp(-A) ), #V) ); V[n]}
for(n=1, 30, print1(a(n), ", "))
A276910
E.g.f. A(x) satisfies: inverse of function A(x)*exp(i*A(x)) equals the conjugate, A(x)*exp(-i*A(x)), where i=sqrt(-1).
Original entry on oeis.org
1, 0, -3, 0, 85, 0, -6111, 0, 872649, 0, -195062395, 0, 76208072733, 0, -12330526252695, 0, 125980697776559377, 0, 857710566759117989133, 0, 11428318296234746748941925, 0, 222333914273403535165432496561, 0, 6242434914385931957857138485252825, 0, 244888574110309970555770302512462694549, 0, 13082369513456349871152908238665975845490989, 0, 930879791318792717095933863751868808486774883065, 0
Offset: 1
E.g.f.: A(x) = x - 3*x^3/3! + 85*x^5/5! - 6111*x^7/7! + 872649*x^9/9! - 195062395*x^11/11! + 76208072733*x^13/13! - 12330526252695*x^15/15! + 125980697776559377*x^17/17! + 857710566759117989133*x^19/19! + 11428318296234746748941925*x^21/21! + 222333914273403535165432496561*x^23/23! + 6242434914385931957857138485252825*x^25/25! +...
such that Series_Reversion( A(x)*exp(i*A(x)) ) = A(x)*exp(-i*A(x)).
RELATED SERIES.
A(x)*exp(i*A(x)) = x + 2*I*x^2/2! - 6*x^3/3! - 28*I*x^4/4! + 180*x^5/5! + 1446*I*x^6/6! - 13888*x^7/7! - 156472*I*x^8/8! + 2034000*x^9/9! + 29724490*I*x^10/10! - 476806176*x^11/11! - 8502508884*I*x^12/12! + 174802753216*x^13/13! + 3768345692398*I*x^14/14! - 63300353418240*x^15/15! - 1386349221087856*I*x^16/16! + 149879079531401472*x^17/17! +...+ A276911(n)*i^(n-1)*x^n/n! +...
exp(i*A(x)) = 1 + I*x - x^2/2! - 4*I*x^3/3! + 13*x^4/4! + 116*I*x^5/5! - 661*x^6/6! - 8632*I*x^7/7! + 70617*x^8/8! + 1247248*I*x^9/9! - 13329001*x^10/10! - 285675776*I*x^11/11! + 3782734693*x^12/12! + 107823153088*I*x^13/13! - 1685127882621*x^14/14! - 28683829833856*I*x^15/15! + 574020572798641*x^16/16! + 133507199865641216*I*x^17/17! +...+ A276912(n)*i^(n-1)*x^n/n! +...
Also, A( A(x)*exp(i*A(x)) ) = i*LambertW(-i*x), which begins:
A( A(x)*exp(i*A(x)) ) = x + 2*I*x^2/2! - 9*x^3/3! - 64*I*x^4/4! + 625*x^5/5! + 7776*I*x^6/6! - 117649*x^7/7! - 2097152*I*x^8/8! +...+ -n^(n-1)*(-i)^(n-1)*x^n/n! +...
-
{a(n) = my(V=[1],A=x); for(i=1,n\2+1, V = concat(V,[0,0]); A = sum(m=1,#V,V[m]*x^m/m!) +x*O(x^#V); V[#V] = -(#V)!/2 * polcoeff( subst( A*exp(I*A), x, A*exp(-I*A) ),#V) );V[n]}
for(n=1,30,print1(a(n),", "))
A182399
G.f. A(x) satisfies: A(A(x)) - A(A(x))^2 = x + x^2.
Original entry on oeis.org
1, 1, 1, 3, 7, 21, 61, 187, 583, 1837, 5885, 19027, 62167, 204917, 680621, 2275211, 7648519, 25852573, 87812093, 299349795, 1023570647, 3515918501, 12140103149, 41894710427, 143835281351, 501071173901, 1808088546557, 6212411239539, 17720665594455
Offset: 1
G.f.: A(x) = x + x^2 + x^3 + 3*x^4 + 7*x^5 + 21*x^6 + 61*x^7 + 187*x^8 +...
Related expansions:
A(A(x)) = x + 2*x^2 + 4*x^3 + 12*x^4 + 40*x^5 + 144*x^6 + 544*x^7 + 2128*x^8 +...
A(A(x))^2 = x^2 + 4*x^3 + 12*x^4 + 40*x^5 + 144*x^6 + 544*x^7 + 2128*x^8 +...
where A(A(x)) - A(A(x))^2 = x + x^2.
Let C(x) satisfy C(x-x^2) = x, where C(x) begins:
C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 +...+ A000108(n-1)*x^n +...
then
A(-C(-x)) = x + x^3 + 4*x^5 + 21*x^7 + 122*x^9 + 758*x^11 + 4958*x^13 +...+ (-1)^(n-1)*A179270(2*n-1)*x^(2*n-1) +...
-
T(n, m):= if n=m then 1 else ((sum((binomial(k+m,n-k-m)*binomial(2*k+m-1,k+m-1))/(k+m),k,0,n-m))*m -sum(T(n, i) *T(i, m), i, m+1, n-1))/2;
makelist(T(n, 1), n, 1, 10); /* Vladimir Kruchinin, Apr 28 2012 */
-
{a(n)=local(A=x+x^2,G);for(i=1,n,G=subst(A,x,A+x*O(x^n));A=A+(x+x^2-G+G^2)/2);polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
-
/* Faster vectorized version: */
{MM=100;A=[1];B=x;C=(1-sqrt(1-4*(x+x^2+x*O(x^MM))))/2; for(n=1,oo,A=concat(A,0);B=x*Ser(A); A[n]=Vec((B+subst(C+x*O(x^n),x,serreverse(B)))/2)[n]; print1(A[n],", "))}
-
/* PARI/GP Version of Vladimir Kruchinin's formula: */
{T(n, m)=if(n==m,1, if(n>m, (sum(k=0,n-m,(binomial(k+m,n-k-m)*binomial(2*k+m-1,k+m-1))/(k+m))*m - sum(i=m+1,n-1,T(n, i) *T(i, m)))/2 ))}
{a(n)=T(n,1)}
Showing 1-4 of 4 results.
Comments