A179328 a(n) is the smallest prime q > a(n-1) such that, for the previous prime p and the following prime r, the fraction (q-p)/(r-q) has denominator prime(n) (or 0, if such a prime does not exist).
3, 23, 139, 293, 1129, 2477, 8467, 30593, 81463, 85933, 190409, 404597, 535399, 840353, 1100977, 2127163, 4640599, 6613631, 6958667, 10343761, 24120233, 49269581, 83751121, 101649649, 166726367, 273469741, 310845683, 568951459
Offset: 1
Keywords
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local k, p, q, r, pn; pn:= ithprime(n); for k from `if`(n=1, 1, pi(a(n-1))) do p:= ithprime(k); q:= ithprime(k+1); r:= ithprime(k+2); if denom((q-p)/(r-q)) = pn then break fi od; q end: seq(a(n), n=1..10); # Alois P. Heinz, Jan 06 2011
-
Mathematica
a[n_] := a[n] = Module[{k, p, q, r, pn}, pn = Prime[n]; For[k = If[n == 1, 1, PrimePi[a[n - 1]]], True, k++, p = Prime[k]; q = Prime[k + 1]; r = Prime[k + 2]; If [Denominator[(q - p)/(r - q)] == pn, Break[]]]; q]; Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Jan 06 2011
Comments