A179404 Number of ways to place 3 nonattacking kings on an n X n toroidal board.
0, 0, 0, 48, 600, 3108, 10388, 27328, 61668, 124900, 233288, 409008, 681408, 1088388, 1677900, 2509568, 3656428, 5206788, 7266208, 9959600, 13433448, 17858148, 23430468, 30376128, 38952500, 49451428, 62202168, 77574448, 95981648, 117884100
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- V. Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Mathematica
CoefficientList[Series[- 4 x^3 (12 x^6 - 67 x^5 + 140 x^4 - 112 x^3 - 21 x^2 + 66 x + 12) / (x - 1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 01 2013 *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,48,600,3108,10388,27328,61668,124900},30] (* Harvey P. Dale, Aug 04 2024 *)
Formula
Explicit formula: a(n) = 1/6*n^2*(n^4 -27*n^2 +194), n>=4.
G.f.: -4*x^4*(12*x^6 -67*x^5 +140*x^4 -112*x^3 -21*x^2 +66*x +12)/(x-1)^7.