A179422
E.g.f.: A(x) = G(G(x)) = x*G'(x) where G(x) is the g.f. of A179420.
Original entry on oeis.org
1, 4, 36, 528, 11000, 301680, 10379376, 433371008, 21434318496, 1232928216000, 81297809313600, 6074187611551488, 509351655073262976, 47554889211476564736, 4909859201019880800000, 557309205260654645145600
Offset: 1
E.g.f.: A(x) = x + 4*x^2/2! + 36*x^3/3! + 528*x^4/4! + 11000*x^5/5! +...
Let G(x) be the g.f. of A179420, then
. G(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2200*x^5/5! +...
. G(G(x)) = x + 4*x^2/2! + 36*x^3/3! + 528*x^4/4! + 11000*x^5/5! + ...
-
{a(n)=local(A=x+x^2+sum(m=3,n-1,a(m)*x^m/(m*m!))+x*O(x^n));if(n<3,n!*polcoeff(A,n),n*n!*polcoeff(subst(A,x,A),n)/(n-2))}
A221019
Reduced numerators of A179420(n)/n!, where e.g.f. A(x) = Sum_{n>=0} A179420(n)/n! satisfies: A(A(x)) = x*A'(x) with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 1, 2, 11, 55, 419, 1471, 483673, 2756471, 1902667, 139975567, 79889883359, 2616245762827, 97206324428221, 2108611283335, 2036091547932503, 5773060629575464637, 737098816821260577403, 3053528216809788427627, 496374854736310558422419
Offset: 1
E.g.f. A(x) of A179420 begins:
A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2200*x^5/5! +...+ A179420(n)/n!*x^n +...
or, equivalently,
A(x) = x + 1/1*x^2 + 2/1*x^3 + 11/2*x^4 + 55/3*x^5 + 419/6*x^6 + 1471/5*x^7 + 483673/360*x^8 + 2756471/420*x^9 + 1902667/56*x^10 +...+ a(n)/A221020(n)*x^n +...
which satisfies: A(A(x)) = x*A'(x) where:
A'(x) = 1 + 2*x + 12*x^2/2! + 132*x^3/3! + 2200*x^4/4! +...
A(A(x)) = x + 4*x^2/2! + 36*x^3/3! + 528*x^4/4! + 11000*x^5/5! +...
-
{A179420(n)=local(A=x+x^2+sum(m=3, n-1, A179420(m)*x^m/m!)+x*O(x^n)); if(n<3, n!*polcoeff(A, n),
n!*polcoeff(subst(A, x, A), n)/(n-2))}
{a(n)=numerator(A179420(n)/n!)}
for(n=1,25,print1(a(n),","))
A221020
Reduced denominators of A179420(n)/n!, where e.g.f. A(x) = Sum_{n>=0} A179420(n)/n! satisfies: A(A(x)) = x*A'(x) with A(0)=0, A'(0)=1.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 5, 360, 420, 56, 756, 75600, 415800, 2494800, 8424, 1223040, 504504000, 9081072000, 5145940800, 111152321280, 754247894400, 37712394720000, 430747632000, 14454741869568, 319672175961600, 4080179409546240, 14011605115200000, 1653814216454400000
Offset: 1
E.g.f. A(x) of A179420 begins:
A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2200*x^5/5! +...+ A179420(n)/n!*x^n +...
or, equivalently,
A(x) = x + 1/1*x^2 + 2/1*x^3 + 11/2*x^4 + 55/3*x^5 + 419/6*x^6 + 1471/5*x^7 + 483673/360*x^8 + 2756471/420*x^9 + 1902667/56*x^10 +...+ A221019(n)/A221020(n)*x^n +...
which satisfies: A(A(x)) = x*A'(x) where:
A'(x) = 1 + 2*x + 12*x^2/2! + 132*x^3/3! + 2200*x^4/4! +...
A(A(x)) = x + 4*x^2/2! + 36*x^3/3! + 528*x^4/4! + 11000*x^5/5! +...
-
{A179420(n)=local(A=x+x^2+sum(m=3, n-1, A179420(m)*x^m/m!)+x*O(x^n)); if(n<3, n!*polcoeff(A, n),
n!*polcoeff(subst(A, x, A), n)/(n-2))}
{a(n)=denominator(A179420(n)/n!)}
for(n=1,25,print1(a(n),","))
A179421
E.g.f. A(x) satisfies: x*A(x) equals column 0 in the matrix log of the Riordan array (A(x), x*A(x)).
Original entry on oeis.org
1, 1, 4, 33, 440, 8380, 211824, 6771422, 264621216, 12329282160, 671882721600, 42181858413552, 3013915118776704, 242626985772839616, 21821596448977248000, 2176989083049432207600, 239420370429753669425664
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 33*x^3/3! + 440*x^4/4! +...
x*A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2200*x^5/5! +...
...
The RIORDAN ARRAY (A(x), x*A(x)) begins:
. 1;
. 1, 1;
. 4/2!, 2, 1;
. 33/3!, 10/2!, 3, 1;
. 440/4!, 90/3!, 18/2!, 4, 1;
. 8380/5!, 1240/4!, 177/3!, 28/2!, 5, 1;
. 211824/6!, 23800/5!, 2544/4!, 300/3!, 40/2!, 6, 1;
. 6771422/7!, 598788/6!, 49680/5!, 4520/4!, 465/3!, 54/2!, 7, 1; ...
where the e.g.f. of column k = A(x)^(k+1) for k>=0.
...
The MATRIX LOG of the above Riordan array (A(x), x*A(x)) begins:
. 0;
. 1, 0;
. 2/2!, 2, 0;
. 12/3!, 4/2!, 3, 0;
. 132/4!, 24/3!, 6/2!, 4, 0;
. 2200/5!, 264/4!, 36/3!, 8/2!, 5, 0;
. 50280/6!, 4400/5!, 396/4!, 48/3!, 10/2!, 6, 0;
. 1482768/7!, 100560/6!, 6600/5!, 528/4!, 60/3!, 12/2!, 7, 0; ...
where the e.g.f. of column k = (k+1)*x*A(x) for k>=0.
-
{a(n)=local(A=1+x+sum(m=2,n-1,a(m)*x^m/m!)+x*O(x^n));if(n<2,n!*polcoeff(A,n),n!*polcoeff(subst(x*A,x,x*A)/x,n)/(n-1))}
A179497
E.g.f. satisfies: A(A(x))^2 = A(x)^2 * A'(x).
Original entry on oeis.org
1, 2, 18, 312, 8240, 297000, 13705776, 776778688, 52511234688, 4143702216960, 375403993060800, 38537107042934016, 4435139176244554752, 567238312617468850176, 80029364113424328422400
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 18*x^3/3! + 312*x^4/4! + 8240*x^5/5! +..
Related expansions:
. A(x)/x = 1 + x + 6*x^2/2! + 78*x^3/3! + 1648*x^4/4! + 49500*x^5/5! +..
. A(x)^2/x = x + 4*x^2/2! + 42*x^3/3! + 768*x^4/4! + 20680*x^5/5! +..
. A'(x) = 1 + 2*x + 18*x^2/2! + 312*x^3/3! + 8240*x^4/4! +...
. A(A(x)) = x + 4*x^2/2! + 48*x^3/3! + 1008*x^4/4! + 30880*x^5/5! +...
. A(A(x))^2 = 2*x^2/2! + 24*x^3/3! + 480*x^4/4! + 13920*x^5/5! +...
Illustrate a main property of the iterations A_n(x) of A(x) by:
. [A_3(x)]^2 = A(x)^2 * A_2'(x);
. [A_4(x)]^2 = A(x)^2 * A_3'(x);
. [A_5(x)]^2 = A(x)^2 * A_4'(x); ...
which can be shown to hold by the chain rule of differentiation.
...
The RIORDAN ARRAY (A(x)/x, A(x)) begins:
. 1;
. 1, 1;
. 6/2!, 2, 1;
. 78/3!, 14/2!, 3, 1;
. 1648/4!, 192/3!, 24/2!, 4, 1;
. 49500/5!, 4136/4!, 348/3!, 36/2!, 5, 1;
. 1957968/6!, 124840/5!, 7680/4!, 552/3!, 50/2!, 6, 1;
. 97097336/7!, 4928256/6!, 233940/5!, 12520/4!, 810/3!, 66/2!, 7, 1; ...
where the e.g.f. of column k = [A(x)/x]^(k+1) for k>=0.
...
The MATRIX LOG of the above Riordan array (A(x)/x, A(x)) begins:
. 0;
. 1, 0;
. 4/2!, 2, 0;
. 42/3!, 8/2!, 3, 0;
. 768/4!, 84/3!, 12/2!, 4, 0;
. 20680/5!, 1536/4!, 126/3!, 16/2!, 5, 0;
. 749040/6!, 41360/5!, 2304/4!, 168/3!, 20/2!, 6, 0;
. 34497792/7!, 1498080/6!, 62040/5!, 3072/4!, 210/3!, 24/2!, 7, 0; ...
where the e.g.f. of column k = (k+1)*A(x)^2/x for k>=0.
-
{a(n)=local(A=x+1*x^2+sum(m=3,n-1,a(m)*x^m/m!)+O(x^(n+3)));if(n<3,n!*polcoeff(A,n),n!*polcoeff(subst(A,x,A)^2/A^2,n-1)/(n-2))}
A179499
E.g.f. A(x) = G(x)^2/x where G(x) satisfies: G(G(x))^2 = G(x)^2 * G'(x) and G(x) is the g.f. of A179499.
Original entry on oeis.org
1, 4, 42, 768, 20680, 749040, 34497792, 1944626432, 130528288512, 10219233265920, 918320724657600, 93509880099305472, 10677268138244018688, 1355273477576934150144, 189834913883100796531200
Offset: 1
E.g.f.: A(x) = x + 4*x^2/2! + 42*x^3/3! + 768*x^4/4! + 20680*x^5/5! +...
A179330
E.g.f. satisfies: A(x) = (1+x)/(1+3*x) * A(x*(1+x)^2).
Original entry on oeis.org
0, 2, -6, 42, -468, 7080, -133128, 2938824, -73169568, 1997384832, -58814501760, 1868053207680, -65311214042880, 2585560450337280, -115344597684718080, 5424254194395456000, -244310147229735014400, 10256126830544041574400
Offset: 0
E.g.f.: A(x) = 2*x - 6*x^2/2! + 42*x^3/3! - 468*x^4/4! + 7080*x^5/5! - 133128*x^6/6! + 2938824*x^7/7! - 73169568*x^8/8! + 1997384832*x^9/9! - 58814501760*x^10/10! + 1868053207680*x^11/11! - 65311214042880*x^12/12! +...
...
A(x*(1+x)^2) = 2*x + 2*x^2/2! - 18*x^3/3! + 108*x^4/4! - 480*x^5/5! - 2808*x^6/6! + 162792*x^7/7! - 3940128*x^8/8! + 57267648*x^9/9! + 534366720*x^10/10! - 78703384320*x^11/11! + 2883142045440*x^12/12! +...
...
where A(x*(1+x)^2) = (1+3*x)/(1+x) * A(x).
...
Related expansions begin:
. A = 2*x - 6*x^2/2! + 42*x^3/3! - 468*x^4/4! + 7080*x^5/5! +...
. A*Dx(A)/2! = 8*x^2/2! - 90*x^3/3! + 1332*x^4/4! - 25200*x^5/5! +...
. A*Dx(A*Dx(A))/3! = 48*x^3/3! - 1248*x^4/4! + 32760*x^5/5! -+...
. A*Dx(A*Dx(A*Dx(A)))/4! = 384*x^4/4! - 18480*x^5/5! + 770400*x^6/6! -+...
. A*Dx(A*Dx(A*Dx(A*Dx(A))))/5! = 3840*x^5/5! - 300672*x^6/6! +-...
...
Sums of which generate the square of the g.f. of A001764:
. G001764(-x)^2 = 1 - A + A*Dx(A)/2! - A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! -+...
. G001764(-x)^2 = 1 - 2*x + 7*x^2 - 30*x^3 + 143*x^4 - 728*x^5 +...+ A006013(n)*(-x)^n +...
...
The Riordan array ((1+x)^2, x*(1+x)^2) (cf. A116088) begins:
1;
2, 1;
1, 4, 1;
0, 6, 6, 1;
0, 4, 15, 8, 1;
0, 1, 20, 28, 10, 1;
0, 0, 15, 56, 45, 12, 1; ...
The matrix log of Riordan array ((1+x)^2, x*(1+x)^2) begins:
0;
2, 0;
-6/2!, 4, 0;
42/3!, -12/2!, 6, 0;
-468/4!, 84/3!, -18/2!, 8, 0;
7080/5!, -936/4!, 126/3!, -24/2!, 10, 0;
-133128/6!, 14160/5!, -1404/4!, 168/3!, -30/2!, 12, 0; ...
where the g.f. of the leftmost column equals the e.g.f. of this sequence.
-
/* E.g.f. satisfies: A(x) = (1+x)/(1+3*x)*A(x*(1+x)^2): */
{a(n)=local(A=2*x, B); for(m=2, n, B=(1+x)/(1+3*x+O(x^(n+3)))*subst(A,x,x*(1+x)^2+O(x^(n+3))); A=A-polcoeff(B, m+1)*x^m/(m-1)/2); n!*polcoeff(A, n)}
-
/* (1+x)^2 = 1 + A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! +...: */
{a(n)=local(A=0+sum(m=1,n-1,a(m)*x^m/m!),D=1,R=0);R=-((1+x)^2+x*O(x^n))+1+sum(m=1,n,(D=A*deriv(x*D+x*O(x^n)))/m!);-n!*polcoeff(R,n)}
-
/* First column of the matrix log of triangle A116088: */
{a(n)=local(M=matrix(n+1, n+1, r, c, if(r>=c, polcoeff(((1+x)^2+x*O(x^n))^c,r-c))), LOG, ID=M^0); LOG=sum(m=1, n+1, -(ID-M)^m/m); n!*LOG[n+1, 1]}
A193100
E.g.f. A(x) satisfies: A’(x) = x + A(A(x)), where A(x) = Sum_{n>=0} a(n)*x^(3*n+2)/(3*n+2)!.
Original entry on oeis.org
1, 3, 63, 6804, 1990170, 1145276496, 1172421884088, 1981846981092069, 5166650461467914874, 19710026486212156729362, 105613632141369240315500892, 768455476842781911036557334267, 7380326961188107570497477933701847
Offset: 0
E.g.f.: A(x) = x^2/2! + 3*x^5/5! + 63*x^8/8! + 6804*x^11/11! + 1990170*x^14/14! + 1145276496*x^17/17! + 1172421884088*x^20/20! +...
where A'(x) = x + 3*x^4/4! + 63*x^7/7! + 6804*x^10/10! +...
and A(A(x)) = 3*x^4/4! + 63*x^7/7! + 6804*x^10/10! + 1990170*x^13/13! +...
-
{a(n)=local(A=x^2/2);for(i=1,n,A=intformal(x+subst(A,x,A+O(x^(3*n+3)))));(3*n+2)!*polcoeff(A,3*n+2)}
A193202
E.g.f. A(x) satisfies: A(A(x)) = x*A'(A(x)).
Original entry on oeis.org
1, 2, 0, 12, -160, 3240, -86688, 2922640, -119971584, 5847901920, -332122243200, 21653202377664, -1601381638172160, 133036354347921024, -12314128238585510400, 1261212911036957548800, -142082122642808666185728, 17514853400850824425213440, -2351847513553411263501035520, 342599734607249938595012582400
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^4/4! - 160*x^5/5! + 3240*x^6/6! - 86688*x^7/7! + 2922640*x^8/8! - 119971584*x^9/9! + 5847901920*x^10/10! +...
RELATED EXPANSIONS.
_ A(A(x)) = x + 4*x^2/2! + 12*x^3/3! + 48*x^4/4! + 40*x^5/5! + 2640*x^6/6! - 57456*x^7/7! + 2059904*x^8/8! - 85967136*x^9/9! + 4262310720*x^10/10! +...
_ A'(A(x)) = 1 + 2*x + 4*x^2/2! + 12*x^3/3! + 8*x^4/4! + 440*x^5/5! - 8208*x^6/6! +...
_ A(x)/A'(x) = x - 2*x^2/2! + 12*x^3/3! - 132*x^4/4! + 2200*x^5/5! - 50280*x^6/6! + 1482768*x^7/7! - 54171376*x^8/8! + 2381590944*x^9/9! - 123292821600*x^10/10! +...
Higher order iterations begin:
_ A_3(x) = x + 6*x^2/2! + 36*x^3/3! + 252*x^4/4! + 1800*x^5/5! + 16920*x^6/6! +...
_ A_4(x) = x + 8*x^2/2! + 72*x^3/3! + 768*x^4/4! + 9200*x^5/5! + 126720*x^6/6! +...
_ A_5(x) = x + 10*x^2/2! + 120*x^3/3! + 1740*x^4/4! + 29200*x^5/5! + 561000*x^6/6! +...
Illustrate a main property of the iterations A_n(x) by:
_ A(x)/A'(x) = A(x) * A(A(x)) / (x*d/dx A(A(x)));
_ A(x)/A'(x) = A_2(x) * A_3(x) / (x*d/dx A_3(x));
_ A(x)/A'(x) = A_3(x) * A_4(x) / (x*d/dx A_4(x));
_ A(x)/A'(x) = A_4(x) * A_5(x) / (x*d/dx A_5(x)); ...
which can be shown consistent by the chain rule of differentiation.
-
{a(n)=local(A=x+x^2+sum(m=3, n-1, a(m)*x^m/m!)+x*O(x^n)); if(n<3, n!*polcoeff(A, n), n!*polcoeff(subst(A,x,A)-x*subst(A',x,A), n)/(n-2))}
A193264
E.g.f. A(x) satisfies: A(A(A(x))) = 2*x*A'(x) - A(x), where A(x) = Sum_{n>=1} a(n)*x^n, with a(1)=1, a(2)=2.
Original entry on oeis.org
1, 2, 18, 324, 9140, 359460, 18408600, 1174201280, 90423766800, 8215991163000, 865420074120800, 104218992780067440, 14188585798246317120, 2163608674997595229040, 366682177870608886473600, 68611838511981521881152000, 14093827998013078645611495680
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 18*x^3/3! + 324*x^4/4! + 9140*x^5/5! + 359460*x^6/6! +...+ a(n)*x^n/n! +...
where
A(A(A(x))) = x + 6*x^2/2! + 90*x^3/3! + 2268*x^4/4! + 82260*x^5/5! + 3954060*x^6/6! +...+ (2*n-1)*a(n)*x^n/n! +...
which equals:
2*x*A'(x) - A(x) = x + 3*2*x^2/2! + 5*18*x^3/3! + 7*324*x^4/4! + 9*9140*x^5/5! +...
-
{a(n)=local(A=x);if(n<1,0,if(n<=2,n,A=x+sum(m=2,n-1,a(m)*x^m/m!)+x*O(x^n);
n!*polcoeff(subst(A,x,subst(A,x,A))-2*x*A',n)/(2*n-4)))}
Showing 1-10 of 16 results.
Comments