cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A179420 E.g.f. A(x) satisfies: A(A(x)) = x*A'(x) with A(0)=0, A'(0)=1.

Original entry on oeis.org

0, 1, 2, 12, 132, 2200, 50280, 1482768, 54171376, 2381590944, 123292821600, 7390709937600, 506182300962624, 39180896544097152, 3396777800819754624, 327323946734658720000, 34831825328790915321600
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2010

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2200*x^5/5! +...
E.g.f. satisfies: A(A(x)) = x*A'(x) where:
A'(x) = 1 + 2*x + 12*x^2/2! + 132*x^3/3! + 2200*x^4/4! +...
A(A(x)) = x + 4*x^2/2! + 36*x^3/3! + 528*x^4/4! + 11000*x^5/5! +...
Related expansions begin:
A*Dx(A)/2! = 2*x^2/2! + 15*x^3/3! + 180*x^4/4! + 3150*x^5/5! +...
A*Dx(A*Dx(A))/3! = 6*x^3/3! + 104*x^4/4! + 2140*x^5/5! +...
A*Dx(A*Dx(A*Dx(A)))/4! = 24*x^4/4! + 770*x^5/5! + 24600*x^6/6! +...
A*Dx(A*Dx(A*Dx(A*Dx(A))))/5! = 120*x^5/5! + 6264*x^6/6! +...
which generate iterations of A=A(x) as illustrated by:
A(A(x))/x = 1 + 2*A + 2^2*A*Dx(A)/2! + 2^3*A*Dx(A*Dx(A))/3! +...
A(A(A(x)))/x = 1 + 3*A + 3^2*A*Dx(A)/2! + 3^3*A*Dx(A*Dx(A))/3! +...
A_{-1}(x)/x = 1 - A + A*Dx(A)/2! - A*Dx(A*Dx(A))/3! +-...(inverse).
Illustrate a main property of the iterations A_n(x) of A(x) by:
A(x) = A(A(x)) * A(x)/[x*d/dx A(x)];
A(x) = A_3(x) * A_2(x)/[x*d/dx A_2(x)];
A(x) = A_4(x) * A_3(x)/[x*d/dx A_3(x)]; ...
which can be shown consistent by the chain rule of differentiation.
...
The RIORDAN ARRAY (A(x)/x, A(x)) begins:
. 1;
. 1, 1;
. 4/2!, 2, 1;
. 33/3!, 10/2!, 3, 1;
. 440/4!, 90/3!, 18/2!, 4, 1;
. 8380/5!, 1240/4!, 177/3!, 28/2!, 5, 1;
. 211824/6!, 23800/5!, 2544/4!, 300/3!, 40/2!, 6, 1;
. 6771422/7!, 598788/6!, 49680/5!, 4520/4!, 465/3!, 54/2!, 7, 1; ...
where the e.g.f. of column k = A(x)^(k+1)/x for k>=0.
...
The MATRIX LOG of the above Riordan array (A(x)/x, A(x)) begins:
. 0;
. 1, 0;
. 2/2!, 2, 0;
. 12/3!, 4/2!, 3, 0;
. 132/4!, 24/3!, 6/2!, 4, 0;
. 2200/5!, 264/4!, 36/3!, 8/2!, 5, 0;
. 50280/6!, 4400/5!, 396/4!, 48/3!, 10/2!, 6, 0;
. 1482768/7!, 100560/6!, 6600/5!, 528/4!, 60/3!, 12/2!, 7, 0; ...
where the e.g.f. of column k = (k+1)*A(x) for k>=0.
		

Crossrefs

a(n)/n! = A221019(n)/A221020(n).

Programs

  • Mathematica
    a[n_] := a[n] = Module[{A}, A[x_] = x+x^2+Sum[a[m]*x^m/m!, {m, 3, n-1}]; If[n<3, n!*Coefficient[A[x], x, n], n!*Coefficient[A[A[x]], x, n]/(n-2)] ]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jan 15 2018, translated from PARI *)
  • Maxima
    Co(n, k, F):=if k=1  then F(n) else sum(F(i+1)*Co(n-i-1, k-1, F), i, 0, n-k);
    a(n):=if n=0 then 0 else if n<3 then 1 else sum(Co(n,k,a)*a(k),k,2,n-1)/(n-2); /* Vladimir Kruchinin, Jun 29 2011 */
  • PARI
    {a(n)=local(A=x+x^2+sum(m=3,n-1,a(m)*x^m/m!)+x*O(x^n));if(n<3,n!*polcoeff(A,n),n!*polcoeff(subst(A,x,A),n)/(n-2))}
    

Formula

E.g.f. A(x) equals the e.g.f. of column 0 in the matrix log of the Riordan array (A(x)/x, A(x)).
Let A_n(x) denote the n-th iteration of e.g.f. A(x) with A_0(x)=x,
then A=A(x) satisfies:
A(x)/x = 1 + A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! +...
A_{-1}(x)/x = 1 - A + A*Dx(A)/2! - A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! -+...
A_n(x)/x = 1 + n*A + n^2*A*Dx(A)/2! + n^3*A*Dx(A*Dx(A))/3! + n^4*A*Dx(A*Dx(A*Dx(A)))/4! +...
where Dx(F) = d/dx(x*F).
Further, we have: A(x) = A_{n+1}(x) * A_n(x)/[x*d/dx A_n(x)] which holds for all n.
a(n)=sum(k=2..n-1, R(n-1,k-1)*a(k))/(n-2), n>2, a(1)=1, a(2)=1, where R is the Riordan array (A(x)/x, A(x)). [Vladimir Kruchinin, Jun 29 2011]
E.g.f. satisfies: A(x) = Series_Reversion(-G(-x)) where G(x) is the e.g.f. of A193202 and satisfies: G(G(x)) = x*G'(G(x)). [Paul D. Hanna, Jul 22 2011]

A221020 Reduced denominators of A179420(n)/n!, where e.g.f. A(x) = Sum_{n>=0} A179420(n)/n! satisfies: A(A(x)) = x*A'(x) with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 5, 360, 420, 56, 756, 75600, 415800, 2494800, 8424, 1223040, 504504000, 9081072000, 5145940800, 111152321280, 754247894400, 37712394720000, 430747632000, 14454741869568, 319672175961600, 4080179409546240, 14011605115200000, 1653814216454400000
Offset: 1

Views

Author

Paul D. Hanna, Dec 28 2012

Keywords

Comments

See A179420 for a description of the fascinating properties of the e.g.f. A(x) that satisfies: A(A(x)) = x*A'(x).

Examples

			E.g.f. A(x) of A179420 begins:
A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2200*x^5/5! +...+ A179420(n)/n!*x^n +...
or, equivalently,
A(x) = x + 1/1*x^2 + 2/1*x^3 + 11/2*x^4 + 55/3*x^5 + 419/6*x^6 + 1471/5*x^7 + 483673/360*x^8 + 2756471/420*x^9 + 1902667/56*x^10 +...+ A221019(n)/A221020(n)*x^n +...
which satisfies: A(A(x)) = x*A'(x) where:
A'(x) = 1 + 2*x + 12*x^2/2! + 132*x^3/3! + 2200*x^4/4! +...
A(A(x)) = x + 4*x^2/2! + 36*x^3/3! + 528*x^4/4! + 11000*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {A179420(n)=local(A=x+x^2+sum(m=3, n-1, A179420(m)*x^m/m!)+x*O(x^n)); if(n<3, n!*polcoeff(A, n),
    n!*polcoeff(subst(A, x, A), n)/(n-2))}
    {a(n)=denominator(A179420(n)/n!)}
    for(n=1,25,print1(a(n),","))

Formula

A221019(n)/A221020(n) = A179420(n)/n!.
Showing 1-2 of 2 results.