cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179644 Product of the 4th power of a prime and 2 different distinct primes (p^4*q*r).

Original entry on oeis.org

240, 336, 528, 560, 624, 810, 816, 880, 912, 1040, 1104, 1134, 1232, 1360, 1392, 1456, 1488, 1520, 1776, 1782, 1840, 1904, 1968, 2064, 2106, 2128, 2256, 2288, 2320, 2480, 2544, 2576, 2754, 2832, 2835, 2928, 2960, 2992, 3078, 3216, 3248, 3280, 3344, 3408
Offset: 1

Views

Author

Keywords

Examples

			240=2^4*3*5,336=2^4*3*7,..810=2^3^4*5,..
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,4}; Select[Range[4000], f]
    Take[Union[#[[1]]^4 #[[2]]#[[3]]&/@(Flatten[Permutations/@ Subsets[ Prime[ Range[ 20]],{3}],1])],50] (* Harvey P. Dale, Feb 07 2013 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim\6)^(1/4),forprime(q=2,sqrt(lim\p^4),if(p==q,next);t=p^4*q;forprime(r=q+1,lim\t,if(p==r,next);listput(v,t*r))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A179644(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**4)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,4)[0]+1))+sum(primepi(x//p**5) for p in primerange(integer_nthroot(x,5)[0]+1))-primepi(integer_nthroot(x,6)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025