A179689 Numbers with prime signature {7,2}, i.e., of form p^7*q^2 with p and q distinct primes.
1152, 3200, 6272, 8748, 15488, 21632, 36992, 46208, 54675, 67712, 107163, 107648, 123008, 175232, 215168, 236672, 264627, 282752, 312500, 359552, 369603, 445568, 476288, 574592, 632043, 645248, 682112, 703125, 789507, 798848, 881792, 1013888
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- OEIS Wiki, Numbers with same prime signature.
- Will Nicholes, Prime Signatures
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; local k; for k from 1+ `if` (n=1, 1, a(n-1)) while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 2] do od; k end: seq (a(n), n=1..32); # Alois P. Heinz, Jan 23 2011
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={2,7}; Select[Range[10^6], f]
-
PARI
list(lim)=my(v=List(),t);forprime(p=2, (lim\4)^(1/7), t=p^7;forprime(q=2, sqrt(lim\t), if(p==q, next);listput(v,t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
-
Python
from math import isqrt from sympy import primepi, integer_nthroot, primerange def A179689(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(isqrt(x//p**7)) for p in primerange(integer_nthroot(x,7)[0]+1))+primepi(integer_nthroot(x,9)[0]) return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025
Formula
Sum_{n>=1} 1/a(n) = P(2)*P(7) - P(9) = A085548 * A085967 - A085969 = 0.001741..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
Extensions
Title edited by Daniel Forgues, Jan 22 2011