cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179695 Numbers of the form p^3*q^2*r^2 where p, q, and r are distinct primes.

Original entry on oeis.org

1800, 2700, 3528, 4500, 5292, 8712, 9800, 12168, 12348, 13068, 18252, 20808, 24200, 24500, 25992, 31212, 33075, 33800, 34300, 38088, 38988, 47432, 47916, 55125, 57132, 57800, 60500, 60552, 66248, 69192, 72200, 77175, 79092, 81675, 84500
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A225228. - Reinhard Zumkeller, May 03 2013

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2,3}; Select[Range[10^5], f]
    f[n_]:={Times@@(n^{2,2,3}),Times@@(n^{2,3,2}),Times@@(n^{3,2,2})}; Module[ {nn=20},Select[Flatten[f/@Subsets[Prime[Range[nn]],{3}]],#<= 72*Prime[ nn]^2&]]//Union (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\36)^(1/3), t1=p^3;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=q+1, sqrt(lim\t2), if(p==r,next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A179695(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=isqrt(x//r**3))))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,3)[0]+1))+sum(primepi(isqrt(x//p**5)) for p in primerange(integer_nthroot(x,5)[0]+1))-primepi(integer_nthroot(x,7)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

A050326(a(n)) = 5. - Reinhard Zumkeller, May 03 2013
Sum_{n>=1} 1/a(n) = P(2)^2*P(3)/2 - P(3)*P(4)/2 - P(2)*P(5) + P(7) = 0.0032578591481263202818..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024