A179696 Numbers with prime signature {7,1,1}, i.e., of form p^7*q*r with p, q and r distinct primes.
1920, 2688, 4224, 4480, 4992, 6528, 7040, 7296, 8320, 8832, 9856, 10880, 11136, 11648, 11904, 12160, 14208, 14720, 15232, 15744, 16512, 17024, 18048, 18304, 18560, 19840, 20352, 20608, 21870, 22656, 23424, 23680, 23936, 25728, 25984, 26240, 26752, 27264
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Will Nicholes List of Prime Signatures
- OEIS Wiki, Numbers with same prime signature.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; local k; for k from 1+ `if` (n=1, 1, a(n-1)) while sort (map (x-> x[2], ifactors(k)[2]), `>`)<>[7, 1, 1] do od; k end: seq (a(n), n=1..40); # Alois P. Heinz, Jan 23 2011
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,7}; Select[Range[30000], f]
-
PARI
list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\6)^(1/7), t1=p^7;forprime(q=2, lim\t1, if(p==q, next);t2=t1*q;forprime(r=q+1, lim\t2, if(p==r,next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
-
Python
from math import isqrt from sympy import primerange, primepi, integer_nthroot def A179696(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**7)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(integer_nthroot(x,7)[0]+1))+sum(primepi(x//p**8) for p in primerange(integer_nthroot(x,8)[0]+1))-primepi(integer_nthroot(x,9)[0]) return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025
Extensions
Title edited by Daniel Forgues, Jan 22 2011