A179698 Numbers of the form p^4*q^3*r where p, q, and r are distinct primes.
2160, 3024, 3240, 4536, 4752, 5616, 6000, 7128, 7344, 8208, 8424, 9936, 11016, 12312, 12528, 13392, 14000, 14904, 15000, 15984, 16464, 17712, 18576, 18792, 20088, 20250, 20304, 22000, 22896, 23976, 25488, 26000, 26352, 26568, 27440
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Will Nicholes, List of Prime Signatures
- Index to sequences related to prime signature
Programs
-
Mathematica
f[n_]:=Sort[Last/@FactorInteger[n]]=={1,3,4}; Select[Range[30000], f]
-
PARI
list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\24)^(1/4), t1=p^4;forprime(q=2, (lim\t1)^(1/3), if(p==q, next);t2=t1*q^3;forprime(r=2, lim\t2, if(p==r||q==r, next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
-
Python
from sympy import primepi, primerange, integer_nthroot def A179698(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(x//(p**4*q**3)) for p in primerange(integer_nthroot(x,4)[0]+1) for q in primerange(integer_nthroot(x//p**4,3)[0]+1))+sum(primepi(integer_nthroot(x//p**4,4)[0]) for p in primerange(integer_nthroot(x,4)[0]+1))+sum(primepi(integer_nthroot(x//p**5,3)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+sum(primepi(x//p**7) for p in primerange(integer_nthroot(x,7)[0]+1))-(primepi(integer_nthroot(x,8)[0])<<1) return bisection(f,n,n) # Chai Wah Wu, Mar 28 2025