cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A179702 Numbers of the form p^4*q^5 where p and q are two distinct primes.

Original entry on oeis.org

2592, 3888, 20000, 50000, 76832, 151875, 253125, 268912, 468512, 583443, 913952, 1361367, 2576816, 2672672, 3557763, 4170272, 5940688, 6940323, 7503125, 8954912, 10504375, 13045131, 20295603, 22632992, 22717712, 29552672, 30074733
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A046312 and of A137493. - R. J. Mathar, Jul 27 2010

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Sort[Last /@ FactorInteger @n] == {4, 5}; Select[ Range@ 31668000, fQ] (* fixed by Robert G. Wilson v, Aug 26 2010 *)
    lst = {}; Do[ If[p != q, AppendTo[lst, Prime@p^4*Prime@q^5]], {p, 12}, {q, 10}]; Take[ Sort@ Flatten@ lst, 27] (* Robert G. Wilson v, Aug 26 2010 *)
    Take[Union[First[#]^4 Last[#]^5&/@Flatten[Permutations/@Subsets[ Prime[ Range[30]],{2}],1]],30] (* Harvey P. Dale, Jan 01 2012 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\16)^(1/5), t=p^5;forprime(q=2, (lim\t)^(1/4), if(p==q, next);listput(v,t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179702(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**5,4)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))+primepi(integer_nthroot(x,9)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(4)*P(5) - P(9) = A085964 * A085965 - A085969 = 0.000748..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

Extensions

Edited and extended by Ray Chandler and R. J. Mathar, Jul 26 2010

A190106 Numbers with prime factorization p^2*q^3*r^3 where p, q, and r are distinct primes.

Original entry on oeis.org

5400, 9000, 10584, 13500, 24696, 26136, 36504, 37044, 49000, 62424, 68600, 77976, 95832, 114264, 121000, 143748, 158184, 165375, 169000, 171500, 181656, 207576, 231525, 237276, 266200, 289000, 295704, 332024, 353736, 361000, 363096
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,3,3};Select[Range[500000],f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\4)^(1/6), t1=p^3;forprime(q=p+1, (lim\t1)^(1/3), t2=t1*q^3;forprime(r=2, sqrt(lim\t2), if(p==r||q==r, next);listput(v,t2*r^2)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A190106(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=integer_nthroot(x//r**2,3)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(isqrt(x)+1))+sum(primepi(integer_nthroot(x//p**5,3)[0]) for p in primerange(integer_nthroot(x,5)[0]+1))-primepi(integer_nthroot(x,8)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(3)^2/2 - P(2)*P(6)/2 - P(3)*P(5) + P(8) = 0.00085907862422456410530..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024

A175749 Numbers with 40 divisors.

Original entry on oeis.org

1680, 2160, 2640, 3024, 3120, 3240, 3696, 4080, 4368, 4536, 4560, 4752, 5520, 5616, 5670, 5712, 6000, 6160, 6384, 6864, 6960, 7128, 7280, 7344, 7440, 7680, 7728, 8208, 8424, 8880, 8910, 8976, 9520, 9744, 9840, 9936, 10032, 10320, 10368, 10416, 10530, 10608
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^39, p^19*q^1, p^9*q^3, p^7*q^4, p^9*q^1*r^1, p^4*q^3*r^1 (A179698), and p^4*q^1*r^1*s^1 (A179693), where p, q, r, and s are distinct primes.

Crossrefs

Programs

Formula

A000005(a(n))=40.

A356413 Numbers with an equal sum of the even and odd exponents in their prime factorizations.

Original entry on oeis.org

1, 60, 84, 90, 126, 132, 140, 150, 156, 198, 204, 220, 228, 234, 260, 276, 294, 306, 308, 315, 340, 342, 348, 350, 364, 372, 380, 414, 444, 460, 476, 490, 492, 495, 516, 522, 525, 532, 550, 558, 564, 572, 580, 585, 620, 636, 644, 650, 666, 693, 708, 726, 732, 735
Offset: 1

Views

Author

Amiram Eldar, Aug 06 2022

Keywords

Comments

Numbers k such that A350386(k) = A350387(k).
A085987 is a subsequence. Terms that are not in A085987 are 1, 2160, 3024, ...

Examples

			60 is a term since A350386(60) = A350387(60) = 2.
		

Crossrefs

Subsequence of A028260.
Subsequences: A085987, A179698, A190109, A190110.
Similar sequences: A048109, A187039, A348097.

Programs

  • Mathematica
    f[p_, e_] := (-1)^e*e; q[1] = True; q[n_] := Plus @@ f @@@ FactorInteger[n] == 0; Select[Range[1000], q]
  • PARI
    isok(n) = {my(f = factor(n)); sum(i = 1, #f~, (-1)^f[i,2]*f[i,2]) == 0};
Showing 1-4 of 4 results.