cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179705 Numbers of the form p^7*q^3 where p and q are distinct primes.

Original entry on oeis.org

3456, 16000, 17496, 43904, 170368, 273375, 281216, 625000, 628864, 750141, 877952, 1557376, 2109375, 2910897, 3121792, 3813248, 4804839, 6483584, 6588344, 8821888, 10176896, 10744731, 13289344, 15000633, 19056256
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={3,7}; Select[Range[100000],f]
    With[{nn=25},Take[Union[#[[1]]^7 #[[2]]^3&/@(Flatten[{#,Reverse[ #]}&/@ Subsets[ Prime[Range[nn]],{2}],1])],nn]] (* Harvey P. Dale, Jan 01 2016 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\8)^(1/7), t=p^7;forprime(q=2, (lim\t)^(1/3), if(p==q, next);listput(v,t*q^3))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011

Formula

Sum_{n>=1} 1/a(n) = P(3)*P(7) - P(10) = A085541 * A085967 - P(10) = 0.000454..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020