cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179805 a(0) = 1, a(1) = 3, a(2) = 6 and a(n) = 2*a(n-1) - a(n-2) for n > 3.

Original entry on oeis.org

1, 3, 6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402
Offset: 0

Views

Author

Gary W. Adamson, Jul 27 2010

Keywords

Comments

Apart from the second term, the same as A122709. - R. J. Mathar, Jul 30 2010
For n > 1, a(n) is the maximum value of the sum of the vertices in a normal magic triangle of order n (see formula 10 in Trotter). - Stefano Spezia, Mar 03 2021

Examples

			a(4) = 24 = 9 + a(3) = 9 + 15.
a(4) = 24 = 2*a(3) - a(2) = 2*15 - 6.
		

Crossrefs

Cf. A122709.

Programs

  • Mathematica
    LinearRecurrence[{2,-1},{1,3,6,15},50] (* Harvey P. Dale, Sep 25 2018 *)

Formula

(1 + 3*x + 6*x^2 + 15*x^3 + ...) = (1 + 3*x^2 + 3*x^3 + 3*x^4 + ...) * (1 + 3*x + 3*x^2 + 3*x^3 + 3*x^4 + ...).
a(0) = 1, a(1) = 3, a(2) = 6 and a(n) = 2*a(n-1) - a(n-2) for n > 3.
a(n) = a(n-1) + 9 for n > 2.
For n > 1, a(n) == 6 (mod 9).
From Colin Barker, Oct 28 2012: (Start)
a(n) = 9*n - 12 for n > 1.
G.f.: (2*x+1)*(3*x^2-x+1)/(x-1)^2. (End)
E.g.f.: 13 + 6*x + 3*exp(x)*(3x - 4). - Stefano Spezia, Mar 03 2021