cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A342467 a(n) is the number of n-th order magic triangles.

Original entry on oeis.org

0, 4, 18, 700, 13123, 316424, 7317145, 176476738, 4279366371
Offset: 2

Views

Author

Stefano Spezia, Mar 13 2021

Keywords

Comments

The Trotter reference gives the value 1356 = 76 * 18 for a(5), which is incorrect since 76 is the number of corner groupings and 18 is the maximum number of solutions in any grouping. - Andrew Howroyd, Feb 05 2022

Crossrefs

Programs

  • PARI
    \\ See Links.

Formula

a(n) < A351223(n). - Stefano Spezia, Feb 05 2022

Extensions

a(5) corrected by Andrew Howroyd and Stefano Spezia, Feb 05 2022
a(6)-a(10) from Andrew Howroyd, Feb 05 2022

A341740 a(n) is the maximum value of the magic constant in a normal magic triangle of order n.

Original entry on oeis.org

12, 23, 37, 54, 74, 97, 123, 152, 184, 219, 257, 298, 342, 389, 439, 492, 548, 607, 669, 734, 802, 873, 947, 1024, 1104, 1187, 1273, 1362, 1454, 1549, 1647, 1748, 1852, 1959, 2069, 2182, 2298, 2417, 2539, 2664, 2792, 2923, 3057, 3194, 3334, 3477, 3623, 3772, 3924
Offset: 3

Views

Author

Stefano Spezia, Feb 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1},{12,23,37},49]

Formula

O.g.f.: x^3*(12 - 13*x + 4*x^2)/(1 - x)^3.
E.g.f.: 3 + x - 2*x^2 - exp(x)*(6 - 4*x - 3*x^2)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5.
a(n) = (3*n^2 + n - 6)/2 for n > 2.
a(n) = A285009(n) + A016777(n-2) - 1 for n > 3.
a(n) = A095794(n) - 2 = A140090(n-1) - 1. - Hugo Pfoertner, Feb 18 2021

A179901 Triangle read by rows, antidiagonals of an array generated from (1, r, r, r, ...) convolved with (1, 0, r, r, r, ...).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 4, 6, 8, 4, 1, 5, 8, 15, 12, 5, 1, 6, 10, 24, 24, 16, 6, 1, 7, 12, 35, 40, 33, 20, 7, 1, 8, 14, 48, 60, 56, 42, 24, 8, 1, 9, 16, 63, 84, 85, 70, 51, 28, 9, 1, 10, 18, 80, 112, 120, 110, 88, 60, 32, 10, 1, 11, 20, 99, 144, 161, 156, 135, 104, 69, 36, 11
Offset: 1

Views

Author

Gary W. Adamson, Jul 31 2010

Keywords

Comments

Row sums = A179902: (1, 2, 5, 11, 23, 46, 87, 155, ...).

Examples

			First few rows of the array:
.
1,.1,..2,...3,...4,...5,...6,...7,....8,...
1,.2,..4,...8,..12,..16...20,..24,...28,... = A019442
1,.3,..6,..15,..24,..33,..42,..51,...60,... = A179805
1,.4,..8,..24,..40,..56,..70,..88,..104,...
.
Example: row 4 = (1, 4, 8, 24, ...) = (1, 4, 4, 4, ...) * (1, 0, 4, 4, 4, ...) = (1, r, 2*r, (2*r + r^2), ...).
.
First few rows of the triangle:
.
1,
1, 1;
1, 2, 2;
1, 3, 4, 3;
1, 4, 6, 8, 4;
1, 5, 8, 15, 12, 5;
1, 6, 10, 24, 24, 16, 6;
1, 7, 12, 35, 40, 33, 20, 7;
1, 8, 14, 48, 60, 56, 42, 24, 8;
1, 9, 16, 63, 84, 85, 70, 51, 28, 9;
1, 10, 18, 80, 112, 120, 110, 88, 60, 32, 10;
1, 11, 20, 99, 144, 161, 156, 135, 104, 69, 36, 11;
1, 12, 22, 120, 180, 208, 210, 192, 160, 120, 78, 40, 12;
1, 13, 24, 143, 220, 261, 272, 259, 228, 185, 136, 87, 44, 13;
...
		

Crossrefs

Formula

Triangle read by rows, antidiagonals of an array generated from (1, r, r, r, ...) convolved with (1, 0, r, r, r, ...), such that the r-th row of the array = (1, r, 2*r, ...) then for n > 3, a(n) = r^2 + a(n-1).

A342384 Irregular triangle T read by rows: T(n, k) is the number of n-th order magic triangles with magic constant equal to A285009(n) + k, with 0 < k <= 3*n - 5.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 0, 4, 6, 4, 0, 2, 18, 38, 71, 108, 115, 115, 108, 71, 38, 18, 155, 351, 695, 1067, 1475, 1815, 2007, 1815, 1475, 1067, 695, 351, 155, 1891, 4768, 9872, 15370, 22527, 30096, 35731, 37957, 37957, 35731, 30096, 22527, 15370, 9872, 4768, 1891
Offset: 2

Views

Author

Stefano Spezia, Mar 10 2021

Keywords

Examples

			The triangle begins:
    0;
    1,   1,   1,    1;
    2,   0,   4,    6,    4,    0,    2;
   18,  38,  71,  108,  115,  115,  108,   71,   38,   18;
  155, 351, 695, 1067, 1475, 1815, 2007, 1815, 1475, 1067, 695, 351, 155;
  ...
		

Crossrefs

Cf. A016777 (row length), A179805, A285009, A341740, A342467 (row sums).

Programs

Extensions

Terms a(14) and beyond from Andrew Howroyd, Feb 05 2022

A343053 Table read by ascending antidiagonals: T(k, n) is the maximum vertex sum in a perimeter-magic k-gon of order n.

Original entry on oeis.org

15, 24, 24, 40, 42, 33, 54, 65, 56, 42, 77, 93, 90, 74, 51, 96, 126, 126, 115, 88, 60, 126, 164, 175, 165, 140, 106, 69, 150, 207, 224, 224, 198, 165, 120, 78, 187, 255, 288, 292, 273, 237, 190, 138, 87, 216, 308, 350, 369, 352, 322, 270, 215, 152, 96, 260, 366, 429, 455, 450, 420, 371, 309, 240, 170, 105
Offset: 3

Views

Author

Stefano Spezia, Apr 03 2021

Keywords

Examples

			The table begins:
k\n|   3    4    5    6    7 ...
---+------------------------
3  |  15   24   33   42   51 ...
4  |  24   42   56   74   88 ...
5  |  40   65   90  115  140 ...
6  |  54   93  126  165  198 ...
7  |  77  126  175  224  273 ...
...
		

Crossrefs

Cf. A005475 (n = 4), A022267 (n = 6), A059270, A179805 (k = 3), A343052 (minimum).

Programs

  • Mathematica
    T[k_,n_]:=k(1+k(2n-3)-Mod[n,2](1-Mod[k,2]))/2; Table[T[k+3-n,n],{k,3,14},{n,3,k}]//Flatten

Formula

T(k, n) = k*(1 + k*(2n - 3) - (n mod 2)*(1 - (k mod 2)))/2.
T(n, n) = A059270(n-1).
Showing 1-5 of 5 results.