cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377521 Antidiagonal sums of A343053.

Original entry on oeis.org

0, 0, 0, 15, 48, 115, 217, 385, 611, 945, 1366, 1947, 2650, 3575, 4663, 6045, 7637, 9605, 11836, 14535, 17556, 21147, 25125, 29785, 34903, 40825, 47282, 54675, 62686, 71775, 81571, 92597, 104425, 117645, 131768, 147455, 164152, 182595, 202161, 223665, 246411, 271297, 297550
Offset: 0

Views

Author

Stefano Spezia, Jan 03 2025

Keywords

Crossrefs

Cf. A343053.

Programs

  • Mathematica
    LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{0,0,0,15,48,115,217,385,611,945},43]

Formula

a(n) = (2 - n)*(12*(1 + (-1)^n) - 105*n + 3*(-1)^n*n - 32*n^2 - 4*n^3)/48 for n > 1.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n > 9.
G.f.: x^3*(15 + 18*x - 11*x^2 - 19*x^3 + 9*x^4 + 7*x^5 - 3*x^6)/((1 - x)^5*(1 + x)^3).
E.g.f.: (1 - 3*x + 23*x^2/8 + x^3 + x^4/12)*cosh(x) - x*(81 - 72*x - 24*x^2 - 2*x^3)*sinh(x)/24 - 1 + 3*x.

A343052 Table read by ascending antidiagonals: T(k, n) is the minimum vertex sum in a perimeter-magic k-gon of order n.

Original entry on oeis.org

6, 12, 6, 15, 10, 6, 24, 15, 12, 6, 28, 21, 15, 10, 6, 40, 28, 24, 15, 12, 6, 45, 36, 28, 21, 15, 10, 6, 60, 45, 40, 28, 24, 15, 12, 6, 66, 55, 45, 36, 28, 21, 15, 10, 6, 84, 66, 60, 45, 40, 28, 24, 15, 12, 6, 91, 78, 66, 55, 45, 36, 28, 21, 15, 10, 6, 112, 91, 84, 66, 60, 45, 40, 28, 24, 15, 12, 6
Offset: 3

Views

Author

Stefano Spezia, Apr 03 2021

Keywords

Examples

			The table begins:
k\n|   3   4   5   6   7 ...
---+--------------------
3  |   6   6   6   6   6 ...
4  |  12  10  12  10  12 ...
5  |  15  15  15  15  15 ...
6  |  24  21  24  21  24 ...
7  |  28  28  28  28  28 ...
...
		

Crossrefs

Cf. A000217 (n = 4), A010722 (k = 3), A010854 (k = 5), A010867 (k = 7), A265225, A343053 (maximum).

Programs

  • Mathematica
    T[k_,n_]:=k(1+k+Mod[n,2](1-Mod[k,2]))/2; Table[T[k+3-n,n],{k,3,14},{n,3,k}]//Flatten

Formula

O.g.f.: x*(1 + x^2 + y + x*(2 + 3*y))/((1 - x)^3*(1 + x)^2*(1 - y^2)).
E.g.f.: x*((5 + 2*x)*cosh(x + y) - cosh(x - y) + 2*(2 + x)*sinh(x + y))/4.
T(k, n) = k*(1 + k + (n mod 2)*(1 - (k mod 2)))/2.
T(k, 3) = A265225(k-1) (conjectured).
Showing 1-2 of 2 results.