cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379703 Antidiagonal sums of A343052.

Original entry on oeis.org

0, 0, 0, 6, 18, 31, 57, 80, 125, 161, 230, 282, 380, 451, 583, 676, 847, 965, 1180, 1326, 1590, 1767, 2085, 2296, 2673, 2921, 3362, 3650, 4160, 4491, 5075, 5452, 6115, 6541, 7288, 7766, 8602, 9135, 10065, 10656, 11685, 12337, 13470, 14186, 15428, 16211, 17567, 18420, 19895, 20821
Offset: 0

Views

Author

Stefano Spezia, Dec 30 2024

Keywords

Crossrefs

Programs

  • Magma
    [0,0] cat [(n - 2)*(108 + 43*n + 8*n^2 + 3*(-1)^n*(4 + n))/48: n in [2..60]]; // Vincenzo Librandi, Jan 02 2025
  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{0,0,0,6,18,31,57,80,125},50]
    CoefficientList[Series[x^3*(6+12*x-5*x^2-10*x^3+2*x^4+3*x^5)/((1-x)^4*(1+x)^3),{x,0,60}],x] (* Vincenzo Librandi, Jan 02 2025 *)

Formula

a(n) = (n - 2)*(108 + 43*n + 8*n^2 + 3*(-1)^n*(4 + n))/48 for n > 1.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n > 8.
G.f.: x^3*(6 + 12*x- 5*x^2 - 10*x^3 + 2*x^4 + 3*x^5)/((1 - x)^4*(1 + x)^3).
E.g.f.: (x^3/6 + 9*x^2/8 + x - 5)*cosh(x) + (4*x^3 + 24*x^2 + 33*x - 96)*sinh(x)/24.
Conjecture: a(n) = A273790((n-1)/2) for n odd and > 1.

A343053 Table read by ascending antidiagonals: T(k, n) is the maximum vertex sum in a perimeter-magic k-gon of order n.

Original entry on oeis.org

15, 24, 24, 40, 42, 33, 54, 65, 56, 42, 77, 93, 90, 74, 51, 96, 126, 126, 115, 88, 60, 126, 164, 175, 165, 140, 106, 69, 150, 207, 224, 224, 198, 165, 120, 78, 187, 255, 288, 292, 273, 237, 190, 138, 87, 216, 308, 350, 369, 352, 322, 270, 215, 152, 96, 260, 366, 429, 455, 450, 420, 371, 309, 240, 170, 105
Offset: 3

Views

Author

Stefano Spezia, Apr 03 2021

Keywords

Examples

			The table begins:
k\n|   3    4    5    6    7 ...
---+------------------------
3  |  15   24   33   42   51 ...
4  |  24   42   56   74   88 ...
5  |  40   65   90  115  140 ...
6  |  54   93  126  165  198 ...
7  |  77  126  175  224  273 ...
...
		

Crossrefs

Cf. A005475 (n = 4), A022267 (n = 6), A059270, A179805 (k = 3), A343052 (minimum).

Programs

  • Mathematica
    T[k_,n_]:=k(1+k(2n-3)-Mod[n,2](1-Mod[k,2]))/2; Table[T[k+3-n,n],{k,3,14},{n,3,k}]//Flatten

Formula

T(k, n) = k*(1 + k*(2n - 3) - (n mod 2)*(1 - (k mod 2)))/2.
T(n, n) = A059270(n-1).
Showing 1-2 of 2 results.