A179707 Semiprimes p*q such that 2^p mod q == 2^q mod p.
4, 9, 25, 49, 121, 169, 289, 341, 361, 529, 731, 841, 961, 1333, 1369, 1387, 1681, 1727, 1849, 2047, 2209, 2701, 2809, 3277, 3481, 3503, 3721, 3763, 4033, 4369, 4489, 4681, 5041, 5329, 5461, 6241, 6889, 7921, 7957, 8321, 9409, 9509, 10201, 10261, 10609, 10669, 11449, 11881
Offset: 1
Keywords
Examples
341 is a term because 341 = 11*31 and 2^11 mod 31 = 2^31 mod 11.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
fQ[n_] := Block[{fi = Flatten[ Table[ First@ #, {Last@ #}] & /@ FactorInteger@ n]}, Length@ fi == 2 && PowerMod[2, fi[[2]], fi[[1]]] == PowerMod[2, fi[[1]], fi[[2]]]]; Select[ Range@ 12000, fQ] With[{nn=50},Take[Union[Times@@@Select[Tuples[Prime[Range[2nn]],2], PowerMod[ 2,#[[1]],#[[2]]]==PowerMod[2,#[[2]],#[[1]]]&]],nn]] (* Harvey P. Dale, Sep 03 2015 *)
Comments