cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179848 Expansion of series reversion of generating function for triangular numbers.

Original entry on oeis.org

0, 1, -3, 12, -55, 273, -1428, 7752, -43263, 246675, -1430715, 8414640, -50067108, 300830572, -1822766520, 11124755664, -68328754959, 422030545335, -2619631042665, 16332922290300, -102240109897695, 642312451217745, -4048514844039120, 25594403741131680
Offset: 0

Views

Author

Michael Somos, Jan 10 2011

Keywords

Examples

			G.f. = x - 3*x^2 + 12*x^3 - 55*x^4 + 273*x^5 - 1428*x^6 + 7752*x^7 - 43263*x^8 + ...
		

Crossrefs

Cf. A000217.

Programs

  • Magma
    [n le 0 select 0 else (-1)^(n+1)*Factorial(3*n)/( Factorial(n)* Factorial(2*n+1)): n in [0..30]]; // G. C. Greubel, Aug 14 2018
  • Maple
    a:= n-> coeff(series(RootOf(A=x*(1-A)^3, A), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2012
    # Using function CompInv from A357588.
    0, CompInv(23, n -> n*(n+1)/2); # Peter Luschny, Oct 05 2022
  • Mathematica
    CoefficientList[Series[1 - Sinh[ArcSinh[Sqrt[27*x/4]]/3]/Sqrt[3*x/4], {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * (3*n)! / (n! * (2*n+1)!) )};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( x / (1 - x)^3 + x * O(x^n) ), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = O(x); for( k = 0, n, A = x * (1 - A)^3 ); polcoeff( A, n ))};
    

Formula

A001764(n) = 0^n - (-1)^n * a(n).
G.f. A(x) satisfies A(x) = x * (1 - A(x))^3.
G.f.: 1 - sinh( arcsinh( sqrt( 27*x/4 ) ) / 3 ) / sqrt( 3*x/4 ).
D-finite with recurrence +2*n*(2*n+1)*a(n) +3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Mar 24 2023