A179865 Number of n-bit binary numbers containing one run of 0's.
1, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431
Offset: 1
Examples
G.f. = x + x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 15*x^6 + 21*x^7 + 28*x^8 + ... For n = 4, the 6 numbers are 1000, 1001, 1011, 1100, 1101, 1110.
Links
- Gennady Eremin, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A000217.
Programs
-
Python
def A179865(n): if n==1: return 1 return n*(n-1)//2 # Gennady Eremin, Mar 14 2021
Formula
For n>=2, a(n) = A000217(n-1).
G.f.: x*(1 + x/(1-x)^3). - Gennady Eremin, Feb 23 2021
For n > 1, a(n+1) = a(n) + n. - Gennady Eremin, Mar 12 2021
E.g.f.: x*(2 + x*exp(x))/2. - Stefano Spezia, Jan 29 2023
Extensions
Edited by N. J. A. Sloane, Aug 08 2010
More terms from Michel Marcus, Feb 23 2021