cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A082069 Smallest common prime-divisor of n and Sigma_2(n) = A001157(n); a(n) = 1 if no common prime-divisor exists.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 5, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 5, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 7, 1, 5, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 5
Offset: 1

Views

Author

Labos Elemer, Apr 07 2003

Keywords

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := n; f2[x_] := DivisorSigma[2, x]; Table[Min[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}]
    (* Second program: *)
    Array[If[CoprimeQ[#1, #2], 1, Min@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {#, DivisorSigma[2, #]} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
  • PARI
    A020639(n) = if(1==n,n,vecmin(factor(n)[, 1]));
    A082069(n) = A020639(gcd(sigma(n,2), n)); \\ Antti Karttunen, Nov 03 2017

Formula

a(n) = A020639(A179930(n)). - Antti Karttunen, Nov 03 2017

Extensions

Changed "was found" to "exists" in definition. - N. J. A. Sloane, Jan 29 2022

A179931 a(n) = gcd(sigma(n), sigma_2(n)).

Original entry on oeis.org

1, 1, 2, 7, 2, 2, 2, 5, 13, 2, 2, 14, 2, 2, 4, 31, 2, 13, 2, 42, 4, 2, 2, 10, 31, 2, 20, 14, 2, 4, 2, 21, 4, 2, 4, 91, 2, 10, 4, 10, 2, 4, 2, 42, 26, 2, 2, 62, 57, 93, 4, 14, 2, 20, 4, 10, 20, 10, 2, 84, 2, 2, 26, 127, 4, 4, 2, 42, 4, 4, 2, 65, 2, 2, 62, 14, 4, 4, 2, 62, 121, 2, 2, 28, 4, 2, 20, 10, 2, 26, 4, 42, 4, 2, 4, 42, 2, 57, 26, 217
Offset: 1

Views

Author

N. J. A. Sloane, Jul 09 2011, following a suggestion from R. J. Mathar

Keywords

Comments

A006530(a(n)) = A082066(n). - Reinhard Zumkeller, Jul 10 2011, the latter A-number corrected by Antti Karttunen, May 22 2017.
Not multiplicative: a(2)*a(19) <> a(38). - R. J. Mathar, Oct 08 2011

Crossrefs

Programs

  • Maple
    A179931 := proc(n) igcd( numtheory[sigma](n), numtheory[sigma][2](n)) ; end proc:
    seq(A179931(n),n=1..100) ;
  • Mathematica
    Table[GCD @@ Map[DivisorSigma[#, n] &, {1, 2}], {n, 100}] (* Michael De Vlieger, May 22 2017 *)
  • PARI
    a(n)=gcd(sigma(n),sigma(n,2)) \\ Charles R Greathouse IV, Feb 14 2013

A082063 Greatest common prime divisor of n and sigma_2(n) = A001157(n), or 1 if the two are relatively prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 3, 1, 2, 5, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 7, 1, 5, 1, 1, 1, 2, 5, 3, 1, 2, 1, 5, 1, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 2, 7, 1, 13, 2, 1, 2, 1, 5, 1, 1, 1, 2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 7, 5, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 5
Offset: 1

Views

Author

Labos Elemer, Apr 07 2003

Keywords

Crossrefs

Programs

  • Mathematica
    (* factors/exponent SET *) ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := x; f2[x_] := DivisorSigma[2, x]; Table[Max[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}]
    (* Second program: *)
    Array[If[CoprimeQ[#1, #2], 1, Max@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {#, DivisorSigma[2, #]} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
  • PARI
    A006530(n) = if(1==n, n, vecmax(factor(n)[, 1]));
    A082063(n) = A006530(gcd(sigma(n,2), n)); \\ Antti Karttunen, Nov 03 2017

Formula

a(n) = A006530(A179930(n)). - Antti Karttunen, Nov 03 2017

Extensions

Erroneous comment removed by Antti Karttunen, Nov 03 2017
Showing 1-3 of 3 results.