cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180033 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + x)/(1 - 5*x - 5*x^2).

Original entry on oeis.org

1, 6, 35, 205, 1200, 7025, 41125, 240750, 1409375, 8250625, 48300000, 282753125, 1655265625, 9690093750, 56726796875, 332084453125, 1944056250000, 11380703515625, 66623798828125, 390022511718750, 2283231552734375
Offset: 0

Views

Author

Johannes W. Meijer, Aug 09 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the corner and side squares (m = 1, 3, 7, 9; 2, 4, 6, 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180032.
The sequence above corresponds to 56 red queen vectors, i.e., A[5] vector, with decimal values between 47 and 488. The central squares lead for these vectors to A057088.
Inverse binomial transform of A004187 (without the leading 0).
Equals the INVERT transform of A086347 and the INVERTi transform of A180167. - Gary W. Adamson, Aug 14 2010

Crossrefs

Cf. A086347, A180167. - Gary W. Adamson, Aug 14 2010

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 5*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
    
  • Maple
    with(LinearAlgebra): nmax:=20; m:=1; A[5]:= [0,0,0,1,0,1,1,1,1]: A:=Matrix([[0,1,1,1,1,0,1,0,1], [1,0,1,1,1,1,0,1,0], [1,1,0,0,1,1,1,0,1], [1,1,0,0,1,1,1,1,0], A[5], [0,1,1,1,1,0,0,1,1], [1,0,1,1,1,0,0,1,1], [0,1,0,1,1,1,1,0,1], [1,0,1,0,1,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{5,5},{1,6}, 30] (* Vincenzo Librandi, Nov 15 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)/(1-5*x-5*x^2)) \\ G. C. Greubel, Apr 07 2019
    
  • Sage
    ((1+x)/(1-5*x-5*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 07 2019

Formula

G.f.: (1+x)/(1 - 5*x - 5*x^2).
a(n) = 5*a(n-1) + 5*a(n-2) with a(0) = 1 and a(1) = 6.
a(n) = ((7+5*A)*A^(-n-1) + (7+5*B)*B^(-n-1))/45 with A = (-5+3*sqrt(5))/10 and B = (-5-3*sqrt(5))/10.
Limit_{k->oo} a(n+k)/a(k) = 2*5^(n/2)/(L(2*n) - F(2*n)*sqrt(5)) with L(n) = A000032(n) and F(n) = A000045(n).
Limit_{k->oo} a(2*n+k)/a(k) = 2*A000351(n)/(A056854(n) - 3*A004187(n)*sqrt(5)) for n >= 1.
Limit_{k->oo} a(2*n-1+k)/a(k) = 2*A000351(n)/(3*A049685(n-1)*sqrt(5) - 5*A033890(n-1)) for n >= 1.
a(n) = A057088(n+1)/5. a(2*n) = 5^n*F(4*(n+1))/3, a(2*n+1) = 5^n*L(2*(2*n+3))/3. - Ehren Metcalfe, Apr 04 2019
E.g.f.: exp(5*x/2)*(15*cosh(3*sqrt(5)*x/2) + 7*sqrt(5)*sinh(3*sqrt(5)*x/2))/15. - Stefano Spezia, Mar 17 2025