A180056 The number of permutations of {1,2,...,2n} with n ascents.
1, 1, 11, 302, 15619, 1310354, 162512286, 27971176092, 6382798925475, 1865385657780650, 679562217794156938, 301958232385734088196, 160755658074834738495566, 101019988341178648636047412, 73990373947612503295166622044, 62481596875767023932367207962680
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- Digital Library of Mathematical Functions, Table 26.14.1
Crossrefs
Programs
-
Maple
A180056 := proc(n) local j; add((-1)^j*binomial(2*n+1,j)*(n-j+1)^(2*n),j=0..n) end: # A180056_list(m) returns [a_0,a_1,..,a_m] A180056_list := proc(m) local A, R, M, n, k; R := 1; M := m + 1; A := array([seq(1, n = 1..M)]); for n from 2 to M do for k from 2 to M do if n = k then R := R, A[k] fi; A[k] := n*A[k-1] + k*A[k] od od; R end:
-
Mathematica
A025585[n_] := Sum[(-1)^j*(n-j)^(2*n-1)*Binomial[2*n, j], {j, 0, n}]; a[0] = 1; a[n_] := A025585[n+1]/(2*n+2); Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jun 28 2013, after Gary Detlefs *) << Combinatorica`; Table[Combinatorica`Eulerian[2 n, n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
-
Python
def A180056_list(m): ret = [1] M = m + 1 A = [1 for i in range(0, M)] for n in range(2, M): for k in range(2, M): if n == k: ret.append(A[k]) A[k] = n*A[k-1] + k*A[k] return ret
Formula
a(n-1) = A025585(n)/(2*n). - Gary Detlefs, Nov 11 2011
a(n+1)/a(n) ~ 4*n^2. - Ran Pan, Oct 26 2015
a(n) ~ sqrt(3) * 2^(2*n+1) * n^(2*n) / exp(2*n). - Vaclav Kotesovec, Oct 16 2016
From Alois P. Heinz, Jul 21 2018: (Start)
a(n) = ceiling(1/2 * (2n)! * [x^(2n) y^n] (exp(x)-y*exp(y*x))/(exp(y*x)-y*exp(x))).
a(n) = (2n)! * [x^(2n) y^n] (1-y)/(1-y*exp((1-y)*x)). (End)
a(n) = A123125(2n,n). - Alois P. Heinz, Nov 13 2024
Extensions
Partially edited by N. J. A. Sloane, Aug 08 2010
Comments