A180184 Irregular triangle read by rows: T(n,k) is the number of compositions of n with k parts, all >= 4, for n >= 4 and 1 <= k <= floor(n/4).
1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 1, 6, 3, 1, 7, 6, 1, 8, 10, 1, 9, 15, 1, 1, 10, 21, 4, 1, 11, 28, 10, 1, 12, 36, 20, 1, 13, 45, 35, 1, 1, 14, 55, 56, 5, 1, 15, 66, 84, 15, 1, 16, 78, 120, 35, 1, 17, 91, 165, 70, 1, 1, 18, 105, 220, 126, 6, 1, 19, 120, 286, 210, 21, 1, 20
Offset: 4
Examples
Triangle T(n,k) (with n >= 4 and 1 <= k <= floor(n/4)) starts as follows: 1; 1; 1; 1; 1, 1; 1, 2; 1, 3; 1, 4; 1, 5, 1; 1, 6, 3; 1, 7, 6; 1, 8, 10; 1, 9, 15, 1; 1, 10, 21, 4; 1, 11, 28, 10; 1, 12, 36, 20; ... T(14,3) = 6 because we have the following compositions (ordered partitions) of 14 with 3 parts, all >= 4: [5,5,4], [4,6,4], [5,4,5], [6,4,4], [4,5,5], [4,4,6].
Links
- R. J. Mathar, Tiling n x m rectangles with 1 x 1 and s x s squares, arXiv:1609.03964 [math.CO] (2016), Section 4.3.
Programs
-
Maple
for n from 4 to 27 do seq(binomial(n-3*k-1, k-1), k = 1 .. floor((1/4)*n)) end do; T := (n,k) -> binomial(n-3*k-1, k-1): seq(seq(T(n,k), k=1..floor(n/4)), n=4..26); # Johannes W. Meijer, Aug 26 2013
-
Mathematica
Flatten[Table[Binomial[n-3k-1,k-1],{n,4,30},{k,Floor[n/4]}]] (* Harvey P. Dale, Feb 05 2013 *)
Formula
T(n, k) = binomial(n-3*k-1, k-1).
T(n, k) = A228572(2*n-4, 2*k-1) + A228572(2*n-7, 2*k-2) - A228572(2*n-3, 2*k-1) for n >= 4 and 1 <= k <= floor(n/4). - Johannes W. Meijer, Aug 26 2013 [Range of k adjusted by Petros Hadjicostas, Apr 15 2020 to start at 1 rather than 0]
G.f.: Sum_{n,k} T(n,k)*z^n*t^k = z^4*t/(1-z-t*z^4). - R. J. Mathar, Aug 24 2016 [Adjusted by Petros Hadjicostas, Apr 14 2020 to agree with the offset]
Comments